GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: To assess the mechanism of P2X2 receptor modulation by transition metals, the cDNA for the wild-type receptor was injected to Xenopus laevis oocytes and examined 48–72 h later by the two-electrode voltage-clamp technique. Copper was the most potent of the trace metals examined; at 10 μm it evoked a 25-fold potentiation of the 10 μm ATP-gated currents. Zinc, nickel or mercury required 10-fold larger concentrations to cause comparable potentiations, while palladium, cobalt or cadmium averaged only 12- and 3-fold potentiations, respectively. Platinum was inactive. The non-additive effect of copper and zinc at 10–100 μm suggests a common site of action; these metals also shifted to the left the ATP concentration–response curves. To define residues necessary for trace metal modulation, alanines were singly substituted for each of the nine histidines in the extracellular domain of the rat P2X2 receptor. The H120A and H213A mutants were resistant to the modulator action of copper, zinc and other metals with the exception of mercury. Mutant H192A showed a reduction but not an abrogation of the copper or zinc potentiation. H245A showed less affinity for copper while this mutant flattened the zinc-induced potentiation. Mutant H319A reduced the copper but not the zinc-induced potentiation. In contrast, mutants H125A, H146A, H152A and H174A conserved the wild-type receptor sensitivity to trace metal modulation. We propose that His120, His192, His213 and His245 form part of a common allosteric metal-binding site of the P2X2 receptor, which for the specific coordination of copper, but not zinc, additionally involves His319.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gazitua, M. C., Vik, D. R., Roux, S., Gregory, A. C., Bolduc, B., Widner, B., Mulholland, M. R., Hallam, S. J., Ulloa, O., & Sullivan, M. B. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. Isme Journal, (2020), doi:10.1038/s41396-020-00825-6.
    Description: Viruses play an important role in the ecology and biogeochemistry of marine ecosystems. Beyond mortality and gene transfer, viruses can reprogram microbial metabolism during infection by expressing auxiliary metabolic genes (AMGs) involved in photosynthesis, central carbon metabolism, and nutrient cycling. While previous studies have focused on AMG diversity in the sunlit and dark ocean, less is known about the role of viruses in shaping metabolic networks along redox gradients associated with marine oxygen minimum zones (OMZs). Here, we analyzed relatively quantitative viral metagenomic datasets that profiled the oxygen gradient across Eastern Tropical South Pacific (ETSP) OMZ waters, assessing whether OMZ viruses might impact nitrogen (N) cycling via AMGs. Identified viral genomes encoded six N-cycle AMGs associated with denitrification, nitrification, assimilatory nitrate reduction, and nitrite transport. The majority of these AMGs (80%) were identified in T4-like Myoviridae phages, predicted to infect Cyanobacteria and Proteobacteria, or in unclassified archaeal viruses predicted to infect Thaumarchaeota. Four AMGs were exclusive to anoxic waters and had distributions that paralleled homologous microbial genes. Together, these findings suggest viruses modulate N-cycling processes within the ETSP OMZ and may contribute to nitrogen loss throughout the global oceans thus providing a baseline for their inclusion in the ecosystem and geochemical models.
    Description: We thank Sullivan Lab members and Heather Maughan for comments on the paper, Bess Ward for her contribution in the N-cycle context of our story, Kurt Hanselmann for his assistance in the calculations of the Gibbs-free energies, and the scientific party and crew of the R/V Atlantis (grant OCE-1356056 to MRM) for the sampling opportunity and support at sea. This work was funded in part by awards from the Agouron Institute to OU and MBS, a Gordon and Betty Moore Foundation Investigator Award (#3790) and NSF Biological Oceanography Awards (#1536989 and #1829831) to MBS, and the Millennium Science Initiative (grant ICN12_019-IMO) to OU. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...