GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-09-22
    Description: Driven by climate change, marine biodiversity is undergoing a phase of rapid change that has proven to be even faster than changes observed in terrestrial ecosystems. Understanding how these changes in species composition will affect future marine life is crucial for conservation management, especially due to increasing demands for marine natural resources. Here, we analyse predictions of a multiparameter habitat suitability model covering the global projected ranges of 〉33,500 marine species from climate model projections under three CO2 emission scenarios (RCP2.6, RCP4.5, RCP8.5) up to the year 2100. Our results show that the core habitat area will decline for many species, resulting in a net loss of 50% of the core habitat area for almost half of all marine species in 2100 under the high-emission scenario RCP8.5. As an additional consequence of the continuing distributional reorganization of marine life, gaps around the equator will appear for 8% (RCP2.6), 24% (RCP4.5), and 88% (RCP8.5) of marine species with cross-equatorial ranges. For many more species, continuous distributional ranges will be disrupted, thus reducing effective population size. In addition, high invasion rates in higher latitudes and polar regions will lead to substantial changes in the ecosystem and food web structure, particularly regarding the introduction of new predators. Overall, our study highlights that the degree of spatial and structural reorganization of marine life with ensued consequences for ecosystem functionality and conservation efforts will critically depend on the realized greenhouse gas emission pathway.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Far more species of organisms are found in the tropics than in temperate and polar regions, but the evolutionary and ecological causes of this pattern remain controversial1,2. Tropical marine fish communities are much more diverse than cold-water fish communities found at higher latitudes3,4, and several explanations for this latitudinal diversity gradient propose that warm reef environments serve as evolutionary ‘hotspots’ for species formation5,6,7,8. Here we test the relationship between latitude, species richness and speciation rate across marine fishes. We assembled a time-calibrated phylogeny of all ray-finned fishes (31,526 tips, of which 11,638 had genetic data) and used this framework to describe the spatial dynamics of speciation in the marine realm. We show that the fastest rates of speciation occur in species-poor regions outside the tropics, and that high-latitude fish lineages form new species at much faster rates than their tropical counterparts. High rates of speciation occur in geographical regions that are characterized by low surface temperatures and high endemism. Our results reject a broad class of mechanisms under which the tropics serve as an evolutionary cradle for marine fish diversity and raise new questions about why the coldest oceans on Earth are present-day hotspots of species formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Biodiversity and conservation data are generally costly to collect, particularly in the marine realm. Hence, data collected for a given—often scientific—purpose are occasionally contributed toward secondary needs, such as policy implementation or other types of decision-making. However, while the quality and accessibility of marine biodiversity and conservation data have improved over the past decade, the ways in which these data can be used to develop and implement relevant management and conservation measures and actions are not always explicit. For this reason, there are a number of scientifically-sound datasets that are not used systematically to inform policy and decisions. Transforming these marine biodiversity and conservation datasets into knowledge products that convey the information required by policy- and decision-makers is an important step in strengthening knowledge exchange across the science-policy interface. Here, we identify seven characteristics of a selection of online biodiversity and conservation knowledge products that contribute to their ability to support policy- and decision-making in the marine realm (as measured by e.g., mentions in policy resolutions/decisions, or use for reporting under selected policy instruments; use in high-level screening for areas of biodiversity importance). These characteristics include: a clear policy mandate; established networks of collaborators; iterative co-design of a user-friendly interface; standardized, comprehensive and documented methods with quality assurance; consistent capacity and succession planning; accessible data and value-added products that are fit-for-purpose; and metrics of use collated and reported. The outcomes of this review are intended to: (a) support data creators/owners/providers in designing and curating biodiversity and conservation knowledge products that have greater influence, and hence impact, in policy- and decision-making, and (b) provide recommendations for how decision- and policy-makers can support the development, implementation, and sustainability of robust biodiversity and conservation knowledge products through the framing of marine policy and decision-making frameworks.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: Large marine protected areas (〉30,000 km2) have a high profile in marine conservation, yet their contribution to conservation is contested. Assessing the overlap of large marine protected areas with 14,172 species, we found large marine protected areas cover 4.4% of the ocean and at least some portion of the range of 83.3% of the species assessed. Of all species within large marine protected areas, 26.9% had at least 10% of their range represented, and this was projected to increase to 40.1% in 2100. Cumulative impacts were significantly higher within large marine protected areas than outside, refuting the critique that they only occur in pristine areas. We recommend future large marine protected areas be sited based on systematic conservation planning practices where possible and include areas beyond national jurisdiction, and provide five key recommendations to improve the long-term representation of all species to meet critical global policy goals (e.g., Convention on Biological Diversity's Aichi Targets)
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-02-23
    Description: The climatic changes of the glacial cycles are thought to have been a major driver of population declines and species extinctions. However, studies to date have focused on terrestrial fauna and there is little understanding of how marine species responded to past climate change. Here we show that a true Arctic species, the bowhead whale (Balaena mysticetus), shifted its range and tracked its core suitable habitat northwards during the rapid climate change of the Pleistocene–Holocene transition. Late Pleistocene lineages survived into the Holocene and effective female population size increased rapidly, concurrent with a threefold increase in core suitable habitat. This study highlights that responses to climate change are likely to be species specific and difficult to predict. We estimate that the core suitable habitat of bowhead whales will be almost halved by the end of this century, potentially influencing future population dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-02-27
    Description: Global climate change during the Late Pleistocene periodically encroached and then released habitat during the glacial cycles, causing range expansions and contractions in some species. These dynamics have played a major role in geographic radiations, diversification and speciation. We investigate these dynamics in the most widely distributed of marine mammals, the killer whale (Orcinus orca), using a global data set of over 450 samples. This marine top predator inhabits coastal and pelagic ecosystems ranging from the ice edge to the tropics, often exhibiting ecological, behavioural and morphological variation suggestive of local adaptation accompanied by reproductive isolation. Results suggest a rapid global radiation occurred over the last 350000years. Based on habitat models, we estimated there was only a 15% global contraction of core suitable habitat during the last glacial maximum, and the resources appeared to sustain a constant global effective female population size throughout the Late Pleistocene. Reconstruction of the ancestral phylogeography highlighted the high mobility of this species, identifying 22 strongly supported long-range dispersal events including interoceanic and interhemispheric movement. Despite this propensity for geographic dispersal, the increased sampling of this study uncovered very few potential examples of ancestral dispersal among ecotypes. Concordance of nuclear and mitochondrial data further confirms genetic cohesiveness, with little or no current gene flow among sympatric ecotypes. Taken as a whole, our data suggest that the glacial cycles influenced local populations in different ways, with no clear global pattern, but with secondary contact among lineages following long-range dispersal as a potential mechanism driving ecological diversification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  [Talk] In: Workshop on Informatics Tools for Large-Scale Spatial Analyses and Mapping, 22.-23.09, Copenhagen, Denmark .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Federal Agency for Nature Conservation
    In:  In: Threatened Biodiversity in the German North and Baltic Seas: Sensitivities towards Human Activities and the Effects of Climate Change. , ed. by Narberhaus, I., Krause, J. and Bernitt, U. Naturschutz und Biologische Vielfalt, 116 . Federal Agency for Nature Conservation, Bonn, Germany, pp. 249-445. ISBN 978-3-7843-4017-3
    Publication Date: 2012-11-27
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Bundesamt für Naturschutz
    In:  In: Bedrohte Biodiversität in der deutschen Nord- und Ostsee: Empfindlichkeiten gegenüber anthropogenen Nutzungen und den Effekten des Klimawandels. , ed. by Narberhaus, I., Krause, J. and Bernitt, U. Naturschutz und Biologische Vielfalt, 116 . Bundesamt für Naturschutz, Bonn, Germany, pp. 265-485. ISBN 978-3-7843-4016-6
    Publication Date: 2012-11-27
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Bundesamt für Naturschutz
    In:  In: Bedrohte Biodiversität in der deutschen Nord- und Ostsee: Empfindlichkeiten gegenüber anthropogenen Nutzungen und den Effekten des Klimawandels. , ed. by Narberhaus, I., Krause, J. and Bernitt, U. Naturschutz und Biologische Vielfalt, 116 . Bundesamt für Naturschutz, Bonn, Germany, pp. 27-41. ISBN 978-3-7843-4016-6
    Publication Date: 2019-09-23
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...