GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    ISSN: 1573-0581
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Seven dives in the submersible ALVIN and four deep-towed (ANGUS) camera lowerings have been made at the eastern ridge-transform intersection of the Oceanographer Transform with the axis of the Mid-Atlantic Ridge. These data constrain our understanding of the processes that create and shape the distinctive morphology that is characteristic of slowly-slipping ridge-transform-ridge plate boundaries. Although the geological relationships observed in the rift valley floor in the study area are similar to those reported for the FAMOUS area, we observe a distinct change in the character of the rift valley floor with increasing proximity to the transform. Over a distance of approximately ten kilometers the volcanic constructional terrain becomes increasingly more disrupted by faulting and degraded by mass wasting. Moreover, proximal to the transform boundary, faults with orientations oblique to the trend of the rift valley are recognized. The morphology of the eastern rift valley wall is characterized by inward-facing scarps that are ridge-axis parallel, but the western rift valley wall, adjacent to the active transform zone, is characterized by a complex fault pattern defined by faults exhibiting a wide range of orientations. However, even for transform parallel faults no evidence for strike-slip displacement is observed throughout the study area and evidence for normal (dip-slip) displacement is ubiquitous. Basalts, semi-consolidated sediments (chalks, debris slide deposits) and serpentinized ultramafic rocks are recovered from localities within or proximal to the rift valley. The axis of accretion-principal transform displacement zone intersection is not clearly established, but appears to be located along the E-W trending, southern flank of the deep nodal basin that defines the intersection of the transform valley with the rift floor.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0581
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Three dives in submersible ALVIN and four deep-towed camera lowerings have been made along the transform valley of the Oceanographer Transform. These data constrain our understanding of the processes that create and shape the distinctive morphology that is characteristic of slowly slipping ridge-transform-ridge (RTR) plate boundaries. Our data suggest that the locus of strike-slip tectonism, called the transform fault zone (TFZ), is confined to a narrow swath (〈4 km) that is centered along the axis of maximum depth. The TFZ is flanked by the inward facing slopes of the transform valley. The lower portions of the valley walls are characterized by broad sloping exposures of undisrupted sediment but at higher elevations the walls are made up of inward facing scarps and terraces of variable dimensions. Although the scarps have been badly degraded by mass wasting, there is no evidence to suggest that these scarps have accommodated significant amounts of strike-slip motion. Plutonic and ultramafic rocks are exposed on these scarps and the occurrence of this diverse assemblage on small-throw faults indicates that the crust is thin and/or discontinuous in this environment. We suggest that this complex igneous assemblage is the product of anomalous accretionary processes that are characteristic of slowly-slipping RTR plate boundaries.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0581
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract During the Fall of 1979, a manned submersible program, utilizing DSRV ALVIN, was carried out at the intersection of the East Pacific Rise (EPR) with the Tamayo Transform boundary. A total of seven dives were completed in the vicinity of the EPR/Tamayo intersection depression and documented the geologic relationships that characterize the juxtaposition of these types of plate boundaries. The young volcanic terrain of the EPR axis can be traced into and across the Tamayo Transform valley but becomes buried by sedimentary talus that is being shed from sediment scarps along the unstable sediment slope that defines the north side of the intersection depression. Within 4 km of the transform boundary, the dominant trend (000°) of the fissures and faults that disrupt the rise-generated volcanics is markedly oblique to the regional direction of sea floor spreading (120°). Since no evidence was found to suggest that these structures accommodate significant amounts of strike-slip displacement, they are taken to reflect a distortion of the EPR extensional tectonic regime by a transform generated shear couple. The floor of the Tamayo Transform valley in this area is inundated by mass-wasted sediment, and the principal transform displacement zone is characterized at the surface by a narrow (〈1.5 km) interval of fault scarps in sediment that trends parallel with the transform valley. Extrapolated to the west, this zone links with zones of transform deformation investigated during earlier submersible studies (CYAMEX and Pastouret, 1981). Evidence of low-level hydrothermal discharge was seen at one locality on the EPR axis and at another 8 km west of the axis at the edge of the zone of transform deformation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...