GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-02
    Description: Salt loading (SL) and water deprivation (WD) are experimental challenges that are often used to study the osmotic circuitry of the brain. Central to this circuit is the supraoptic nucleus (SON) of the hypothalamus, which is responsible for the biosynthesis of the hormones, arginine vasopressin (AVP) and oxytocin (OXT), and their transport to terminals that reside in the posterior lobe of the pituitary. On osmotic challenge evoked by a change in blood volume or osmolality, the SON undergoes a function-related plasticity that creates an environment that allows for an appropriate hormone response. Here, we have described the impact of SL and WD compared with euhydrated (EU) controls in terms of drinking and eating behavior, body weight, and recorded physiological data including circulating hormone data and plasma and urine osmolality. We have also used microarrays to profile the transcriptome of the SON following SL and remined data from the SON that describes the transcriptome response to WD. From a list of 2,783 commonly regulated transcripts, we selected 20 genes for validation by qPCR. All of the 9 genes that have already been described as expressed or regulated in the SON by osmotic stimuli were confirmed in our models. Of the 11 novel genes, 5 were successfully validated while 6 were false discoveries.
    Print ISSN: 0363-6119
    Electronic ISSN: 1522-1490
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 63 (1994), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 29 (1977), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract— Neurosecretory cells (bag cells and R3–14 neurons) in the abdominal ganglion of Aplysia californica were ‘pulse-chased’ in [3H]leucine and comparisons of the labeled protein profiles from the total cell homogenate versus a crude ‘neurosecretory granule’ fraction on acid-urea polyacrylamide gels were made, The data provides indirect support for the hypothesis that some of the post-translational processing of the neurosecretory proteins occurs intragranularly (Lohet al, 1975). In the case of the Bag cells the initial processing of the 29,000 daltons precursor appears to occur extragranularly, possibly in the rough endoplasmic reticulum cisternae.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 40 (1983), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The squid giant axon and extruded axoplasm from the giant axon were used to study the capacity of axoplasm for phospholipid synthesis. Extruded axoplasm, suspended in chemically defined media, catalyzed the synthesis of phospholipids from all of the precursors tested. 32P-Labeled inorganic phosphate and γ-labeled ATP were actively incorporated into phosphatidylinositol phosphate, while [2-3H]myo-inositol and l-[3H(G)]serine were actively incorporated into phosphatidylinositol and phosphatidylserine, respectively. Though less well utilized, [2-3H]glycerol was incorporated into phosphatide acid, phosphatidylinositol, and triglyceride, and [methyl-3H]choline and [1-3H]ethanolamine were incorporated into phosphatidylcholine and phosphatidylethanolamine, respectively. Isolated squid giant axons were incubated in artificial seawater containing the above precursors. The axoplasm was extruded following the incubations. Although most of the product lipids were recovered in the sheath (composed of cortical axoplasm, axolemma, and surrounding satellite cells), significant amounts (4–20%) were present in the extruded axoplasm. With tritiated choline and myo-inositol, the major labeled phospholipids found in both the extruded axoplasm and the sheath were phosphatidylcholine and phosphatidylinositol, respectively. With both glycerol and phosphate, phosphatidylethanolamine was a major labeled lipid in both axoplasm and sheath. These findings demonstrate that all classes of phospholipids are formed by endogenous synthetic enzymes in axoplasm. In addition, we feel that the different patterns of incorporation by intact axons and extruded axoplasm indicate that surrounding sheath cells contribute lipids to axoplasm. A comprehensive picture of axonal lipid metabolism should include axoplasmic synthesis and glial-axon transfer as pathways complementing the axonal transport of perikaryally formed lipids.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 25 (1975), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 26 (1976), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: —Protein synthesis in an identified molluscan neurosecretory cell of the land snail, Otala lactea was examined using three different types of polyacrylamide gel electrophoresis. Cells taken from active snails synthesized specific low molecular weight proteins while those from aestivated snails did not. Most of the newly synthesized low molecular weight proteins in the active snails were lost from the cell body when the preparations was chased for 19 h in label-free enriched medium in the presence of anisomycin, an inhibitor of protein synthesis. If colchicine, a blocker of axonal transport, was included in the chase medium, the proteins present following a pulse were largely replaced by smaller molecular weight species. The results suggest that specific low molecular weight proteins are converted to smaller species and then transported from the cell body.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 7 (1984), S. 189-222 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The magnocellular neurones of the hypothalamo-neurohypophysial system (HNS) play a vital role in the maintenance of body homeostasis by regulating oxytocin (OT) and vasopressin (VP) secretion from the posterior pituitary. During hyperosmolality, OT and VP mRNA levels are known to increase by approximately two-fold, whereas during chronic hypoosmolality, OT and VP mRNA levels decrease to approximately 10–20% of basal levels. In these studies, we evaluated changes in cell size associated with these physiological conditions. Cell and nuclear sizes of neurones in the supraoptic nucleus (SON), the nucleus of the lateral olfactory tract (LOT) and the medial habenular nucleus (MHB) were measured from neurones identified by in situ hybridization histochemistry for βIII-tubulin mRNA, and measurements were made from OT and AVP magnocellular neurones in the SON after phenotypic identification by immunohistochemistry. Under hypoosmolar conditions, the cell and nuclear sizes of OT and VP magnocellular neurones decreased to approximately 60% of basal values, whereas cell and nuclear sizes of OT and VP neurones in hyperosmolar rats increased to approximately 170% of basal values. In contrast, neither hyperosmolality, nor hypoosmolality significantly affected cell and nuclear sizes in the LOT and MHB. These results confirm previous studies that showed that magnocellular neurones increase cell size in response to hyperosmolar conditions and, for the first time, demonstrate a marked decrease in cell size in the SON in response to chronic hypoosmolar conditions. These dramatic changes in cell and nuclear size directly parallel changes in OT and VP gene expression in the magnocellular neurones of the SON and, consequently, are consistent with the pronounced bidirectional changes in gene expression and cellular activity found during these osmotic perturbations. Our results therefore support the concept of global alterations in the synthetic activity of magnocellular OT and AVP neurones in response to extracellular osmolality.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Journal of neuroendocrinology 15 (2003), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The use of hypothalamic organotypic cultures for the long-term study of mechanisms in magnocellular neurones (MCNs) of the hypothalamic-neurohypophysial system has been limited by the relatively poor maintenance of the vasopressin MCNs in vitro. Recent studies have shown that addition of ciliary neurotrophic factor (CNTF) to the media significantly reduced the apoptosis of both oxytocin and vasopressin MCNs. Here, we studied various temporal factors in the CNTF treatment that can influence the efficacy of MCN survival. Immunohistochemistry was used to identify and count surviving vasopressin and oxytocin MCNs in the supraoptic nucleus (SON) in hypothalamic slices cultured in the presence of CNTF (10 ng/ml media) for various time intervals, and in situ hybridization for vasopressin mRNA was used to evaluate the vasopressin mRNA gene expression in the SON under the same conditions. The presence of CNTF in the medium for 10 days produced a maximal increase in the survival of vasopressin MCNs (by 11-fold) and in the survival of oxytocin-MCNs (by approximately four-fold) over controls. These effects persisted for an additional 7–10 days even in the absence of CNTF. The ability of CNTF to increase survival of the MCNs or increase vasopressin mRNA levels in the SON required that the CNTF be present during the initial 7–10 days of culture. CNTF failed to rescue vasopressin or oxytocin MCNs when added to the media only for the last 7 days of a total of 14 days in vitro. Similar results were observed when SON vasopressin mRNA levels were measured. These results indicate that the presence of CNTF is required at the outset to rescue the vasopressin and oxytocin MCN from axotomy induced apoptosis, and that, after 10 days in CNTF, the MCNs no longer require the CNTF for survival.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neuroendocrinology 1 (1989), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Corticotrophin-releasing hormone is found co-localized with oxytocin in the magnocellular-neurohypophysical system but its function in this context is unknown. We tested its effects on neurohypophysical hormone secretion in vitro, in the presence and absence of the intermediate lobe of the pituitary. Corticotrophin-releasing hormone caused significant, calcium-dependent secretion of oxytocin and vasopressin from neural lobes in contact with intermediate lobes, i.e. neurointermediate lobes. This effect was inhibited by the dopamine agonist, bromocriptine. Corticotrophin-releasing hormone had no effect on isolated neural lobes in the absence of the intermediate lobe, but α- and γ-melanocyte-stimulating hormone produced an increase in secretion that was comparable in pattern and magnitude to the effect of corticotrophin-releasing hormone on neurointermediate lobes. These findings suggest that corticotrophin-releasing hormone released with oxytocin may act in a paracrine fashion to stimulate release of intermediate peptides which, in turn, can directly evoke release of oxytocin and vasopressin from neural lobe terminals.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...