GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: International journal of earth sciences, Berlin : Springer, 1999, (2009), 1437-3262
    In: year:2009
    In: extent:18
    Type of Medium: Online Resource
    Pages: 18 , Ill., graph. Darst
    ISSN: 1437-3262
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Geology, Boulder, Colo. : Soc., 1973, 36(2008), 9, Seite 707-710, 0091-7613
    In: volume:36
    In: year:2008
    In: number:9
    In: pages:707-710
    Description / Table of Contents: At convergent margins, fluids rise through the forearc in response to consolidation of the upper plate and dewatering of the subducting plate, and produce various cold-seeprelated features on the seafloor (mud diapirs, mud mounds). At the Central American forearc, authigenic carbonates precipitated from rising fluids within such structures during active venting while typical mixed-mud sediments were ejected onto the surrounding seafloor where they became intercalated with normal pelagic background sediments, indicating that mud mounds evolved unsteadily through alternating active and inactive phases. Intercalated regional ash layers from Plinian eruptions at the Central American volcanic arc provide time marks that constrain the ages of mud ejection activity. U/Th dating of drill core samples of authigenic carbonate caps of mud mounds yields ages agreeing well with those constrained by ash layers and showing that carbonate caps grow inward rather than outward during active venting. Both dating approaches show that offshore Nicaragua and Costa Rica (1) active and inactive phases can occur simultaneously at neighboring mounds, (2) mounds along the forearc have individual histories of activity, but there are distinct time intervals when nearly all mounds have been active or inactive, (3) lifetimes of mounds reach several hundred thousand years, and (4) highly active periods last 1050 k.y. with intervening periods of 〉10 k.y. of relative quiescence.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 0091-7613
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 225 (1973), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 48 (1986), S. 39-59 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract We distinguish three eruptive units of pyroclastic flows (T1, T2, and T3; T for trass) within the late Quaternary Laacher See tephra sequence. These units differ in the chemical/mineralogical composition of the essential pyroclasts ranging from highly differentiated phonolite in T1 to mafic phonolite in T3. T1 and T2 flows were generated during Plinian phases, and T3 flows during a late Vulcanian phase. The volume of the pyroclastic flow deposits is about 0.6 km3. The lateral extent of the flows from the source vent decreases from 〉 10 km (T1) to 〈 4.5 km (T3). In the narrow valleys north of Laacher See, the total thickness of the deposits exceeds 60 m. At least 19 flow units in T1, 6 in T2, and 4 in T3 can be recognized at individual localities. Depositional cycles of 2 to 5 flow units are distinguished in the eruptive units. Thickness and internal structure of the flow units are strongly controlled by topography. Subfacies within flow units such as strongly enriched pumice and lithic concentration zones, dust layers, lapilli pipes, ground layers, and lithic breccias are all compositionally related to each other by enrichment or depletion of clasts depending on their size and density in a fluidized flow. While critical diameters of coarse-tail grading were found to mark the boundary between the coarse nonfluidized and the finer fluidized grain-size subpopulations, we document the second boundary between the fluidized and the very fine entrained subpopulations by histograms and Rosin-Rammler graphs. Grain-size distribution and composition of the fluidized middle-size subpopulations remained largely unchanged during transport. Rheological properties of the pyroclastic flows are deduced from the variations in flow-unit structure within the valleys. T1 flows are thought to have decelerated from 25 m/s at 4 km to 〈 15 m/s at 7 km from the vent; flow density was probably 600–900 kg/m3, and viscosity 5–50 P. The estimated yield strength of the flows of 200– 〉 1000 N/m2 is consistent with the divergence of lithic size/distance curves from purely Newtonian models; the transport of lithics must be treated as in a Bingham fluid. The flow temperature probably decreased from T1 (300°–500°C) to T3 (〈200°C). A large-scale longitudinal variation in the flow units from proximal through medial to distal facies dominantly reflects temporal changes during the progressive collapse of an eruption column. Only a small amount of fallout tephra was generated in the T1 phase of eruption. The pyroclastic flows probably formed from relatively low ash fountains rather than from high Plinian eruption columns.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 56 (1995), S. 640-659 
    ISSN: 1432-0819
    Keywords: Basaltic ignimbrite ; Lava-drop coalescence ; Welding ; Pyroclastic fountain ; Caldera collapse ; Gran Canaria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The 14.1 Ma old composite ignimbrite cooling unit P1 (45 km3) on Gran Canaria comprises a lower mixed rhyolite-trachyte tuff, a central rhyolite-basalt mixed tuff, and a slightly rhyolite-contaminated basaltic tuff at the top. The basaltic tuff is compositionally zoned with (a) an upward change in basalt composition to higher MgO content (4.3–5.2 wt.%), (b) variably admixed rhyolite or trachyte (commonly 〈5 wt.%), and (c) an upward increasing abundance of basaltic and plutonic lithic fragments and cognate cumulate fragments. The basaltic tuff is divided into three structural units: (I) the welded basaltic ignimbrite, which forms the thickest part (c. 95 vol.%) and is the main subject of the present paper; (II) poorly consolidated massive, bomb- and block-rich beds interpreted as phreatomagmatic pyroclastic flow deposits; and (III) various facies of reworked basaltic tuff. Tuff unit I is a basaltic ignimbrite rather than a lava flow because of the absence of top and bottom breccias, radial sheet-like distribution around the central Tejeda caldera, thickening in valleys but also covering higher ground, and local erosion of the underlying P1 ash. A gradual transition from dense rock in the interior to ash at the top of the basaltic ignimbrite reflects a decrease in welding; the shape of the welding profile is typical for emplacement temperatures well above the minimum welding temperature. A similar transition occurs at the base where the ignimbrite was emplaced on cold ground in distal sections. In proximal sections the base is dense where it was emplaced on hot felsic P1 tuff. The intensity of welding, especially at the base, and the presence of spherical particles and of mantled and composite particles formed by accretion and coalescence in a viscous state imply that the flow was a suspension of hot magma droplets. The flow most likely had to be density stratified and highly turbulent to prevent massive coalescence and collapse. Model calculations suggest eruption through low pyroclastic fountains (〈1000 m high) with limited cooling during eruption and turbulent flow from an initial temperature of 1160°C. The large volume of 26 km3 of erupted basalt compared with only 16 km3 of the evolved P1 magmas, and the extremely high discharge rates inferred from model calculations are unusual for a basaltic eruption. It is suggested that the basaltic magma was erupted and emplaced in a fashion commonly only attributed to felsic magmas because it utilized the felsic P1 magma chamber and its ring-fissure conduits. Evolution of the entire P1 eruption was controlled by withdrawal dynamics involving magmas differing in viscosity by more than four orders of magnitude. The basaltic eruption phase was initially driven by buoyancy of the basaltic magma at chamber depth and continued degassing of felsic magma, but most of the large volume of basalt magma was driven out of the reservoir by subsidence of a c. 10 km diameter roof block, which followed a decrease in magma chamber pressure during low viscosity basaltic outflow.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 81 (1992), S. 383-389 
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Abstract The relative size of glass rims coating crystals in the matrix ash provides a semi-quantitative measure of abrasion of ash grains in pyroclastic flows. Median abrasion indices (= areacrystal / areaglass rim) are 8.4 to 18.5 in Laacher See pyroclastic flow units but only 4 to 6.3 in assocciated fallout, showing stronger abrasion of ash particles in the pyroclastic flows. All pyroclasts undergo strong attrition in the vent but clasts in pyroclastic flows undergo a second major phase of abrasion during high-energy near-vent flow. Abrasion of ash particles is weaker during lower-energy higher-strength motion further downstream, suggesting that high contents of fine ash in distal deposits are due to diminishing elutriation rather than high rate of attrition.
    Abstract: Résumé La dimension relative des enduits vitreux qui enrobent les cristaux dans les dépôts de cendres volcaniques peut être utilisée comme mesure semiquantitative de l'abrasion des particules dans les courants pyroclastiques. Au Laacher See les indices d'abrasion (surface du cristal/surface de l'enduit vitreux) sont de 8,4 à 18,5 dans les coulées pyroclastiques et seulement de 4 à 6,3 dans les sédiments formés par retombée, qui leur sont interstratifiés; les particules de cendre ont donc subi une abrasion plus forte dans les coulées. Tous les pyroclastes subissent une forte abrasion dans le cratère; mais dans les coulées pyroclastiques, ils subissent une deuxième action d'abrasion au cours de leur transport en milieu de haute énergie, à proximité du cratère. Dans les conditions de plus basse énergie qui régnent plus en aval, l'abrasion est moins forte; on en déduit que la forte teneur en fines dans les dépôts distaux résulte d'une diminution de l'élutriation plutôt que d'une forte action d'abrasion.
    Notes: Zusammenfassung Die relative Größe von Glassäumen um Kristalle in der Matrix-Asche kann als semi-quantitatives Maß für den Abrieb von Aschepartikeln in pyroklastischen Strömen benutzt werden. Median-Werte des Abriebs-Index (= Flächekristall / FlächeGlassaum) betragen 8,4 bis 18,5 in pyroklastischen Fließeinheiten am Laacher See. Abriebs-Indices stratigraphisch assoziierter Bims-Fallablagerungen liegen bei nur 4 bis 6,3; dies belegt einen höheren Abrieb von Aschepartikeln in den pyroklastischen Strömen. Alle Pyroklasten erfahren gemeinsam starken Abrieb im Schlot, aber Partikel in pyroklastischen Strömen durchlaufen eine zweite Phase starken Abriebs während des hochenergetischen Transports im schlotnahen Bereich. Bei niedriger-energetischem Fließen mit wachsender Bingham-Festigkeit weiter talabwärts wird der Partikelabrieb schwächer. Hohe Gehalte an feiner Asche in distalen Fließeinheiten sind also eher auf schwächer werdende Elutriierung als auf stärkeren Abrieb zurückzuführen.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-11-03
    Description: An international, multidisciplinary research group is proposing the “NICA-BRIDGE” drilling project, within the framework of the International Continental Scientific Drilling Program (ICDP). The project goal is to conduct scientific drilling in Lake Nicaragua and Lake Managua (Nicaragua, Central America) to obtain long lacustrine sediment records to (a) extend the neotropical paleoclimate record back to the Pliocene, making it one of the longest continental tropical climate archives in the world, and to (b) provide geological data on the long-term complex interplay among tectonics, volcanism, sea-level dynamics, climate change, and biosphere. The lakes are the two largest in Central America, and they are located in a trench-parallel half graben that hosts the volcanic front, which developed during or prior to the Pliocene, as a consequence of subduction-related tectonic activity. The lakes are uniquely suited for multidisciplinary scientific investigation as their long, continuous sediment records (several Myr) will facilitate the study of (1) terrestrial and marine basin development at the southern Central American margin, (2) alternating lacustrine and marine environments in response to tectonic and climatic changes, (3) the longest record of tropical climate proxies, (4) the evolution of (and transition between) the Miocene to Pliocene/Pleistocene and Pleistocene to present volcanic arcs, which were separated by slab rollback, (5) the significance of the lakes as hot spots for endemism, and (6) the Great American Biotic Interchange at this strategic location, i.e., the N–S and reverse migration of fauna after the land bridge between the Americas was established. The planned ICDP project offers an opportunity to explore these topics through continent-based seismological, volcanological, paleoclimatological, paleoecological, and paleoenvironmental studies, combined with an International Ocean Discovery Program (IODP) drill project to explore its oceanic continuation. In preparation of this drilling project, an ICDP workshop was held in Montelimar, Nicaragua, on 2–5 March 2020 to develop drilling strategies and refine scientific questions, objectives, and hypotheses. The workshop was organized and hosted by the principal investigators and the Instituto Nicaragüense de Estudios Territoriales (INETER), with funding from the ICDP. Forty-five researchers from 12 countries participated in the workshop, including representatives from ICDP. During the workshop, previous research data on the study lakes, including new recent surveys, were reviewed, and a three-phase strategy for the proposed research was developed. The aim of Phase 0 is to complement the pre-site surveys where we identified the need for further data. In Phase I, with ICDP support, we will obtain sediment cores ∼ 100 m long, which will allow us to investigate many of the scientific questions. Based on the data from those drill cores, coring locations will be identified for a future Phase II, which we envisage as a combined ICDP/IODP project to collect deep drill cores in the lakes and the offshore Sandino Basin in order to extend Phase I results to much deeper time. The Sandino Basin is the oceanic continuation of the depression in which the studied lakes are located, and complementary marine drilling will improve the understanding of the evolution of this complex margin.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-21
    Description: Large explosive volcanic eruptions inject gases, aerosols, and fine ashes into the stratosphere, potentially influencing climate. Emissions of chlorine (Cl) and bromine (Br) from such large eruptions play an important role for catalytic destruction of ozone in the stratosphere, but hitherto the global effects of simultaneous catastrophic release of volcanic Br and Cl into the stratosphere have not been investigated. The Br release from 14 large explosive eruptions throughout Nicaragua covering an entire subduction zone segment in the past 70 ka was determined with petrologic methods. Melt inclusions in volcanic phenocrysts were analyzed using a new optimized synchrotron–X-ray fluorescence microprobe set-up. Single eruptions produced Br outputs of 4–600 kt, giving an average Br emission of 27 kt per eruption. Using the assumption that 10% of the emitted halogens reach the stratosphere, the average Br and Cl loading to the stratosphere would be 3 ppt and 1500 ppt, respectively, which together would account for 185% of the preindustrial equivalent effective stratospheric Cl loading. We thus conclude that many large tropical volcanic eruptions had and have the potential to substantially deplete ozone on a global scale, eventually forming future ozone holes.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-01-30
    Description: A rigorous detection of Milankovitch periodicities in volcanic output across the Pleistocene-Holocene ice age has remained elusive. We report on a spectral analysis of a large number of well-preserved ash plume deposits recorded in marine sediments along the Pacific Ring of Fire. Our analysis yields a statistically significant detection of a spectral peak at the obliquity period. We propose that this variability in volcanic activity results from crustal stress changes associated with ice age mass redistribution. In particular, increased volcanism lags behind the highest rate of increasing eustatic sea level (decreasing global ice volume) by 4.0 ± 3.6 k.y. and correlates with numerical predictions of stress changes at volcanically active sites. These results support the presence of a causal link between variations in ice age climate, continental stress field, and volcanism.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...