GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (1336 pages)
    Edition: 1st ed.
    ISBN: 9780080456249
    DDC: 542/.85
    Language: English
    Note: Front Cover -- Theory and Applications of Computational Chemistry The First Forty Years -- Copyright Page -- Contents -- Chapter 1. Computing technologies, theories, and algorithms. The making of 40 years and more of theoretical and computational chemistry -- 1.1 Introduction -- 1.2 Technology and methodology -- 1.3 Outlook -- 1.4 Acknowledgements -- 1.5 References -- Chapter 2. Dynamical, time-dependent view of molecular theory -- 2.1 Introduction -- 2.2 Molecular Hamiltonian -- 2.3 The time-dependent variational principle in quantum mechanics -- 2.4 Coherent states -- 2.5 Minimal electron nuclear dynamics (END) -- 2.6 Rendering of dynamics -- 2.7 Acknowledgements -- 2.8 References -- Chapter 3. Computation of non-covalent binding affinities -- 3.1 Introduction -- 3.2 Current methods -- 3.3 Future prospects -- 3.4 Concluding perspective: molecular dynamics simulations and drug discovery -- 3.5 Acknowledgements -- 3.6 References -- Chapter 4. Electrodynamics in computational chemistry -- 4.1 Introduction -- 4.2 Electrodynamics of metal nanoparticles -- 4.3 Electronic structure studies of surface enhanced Raman spectra -- 4.4 Acknowledgements -- 4.5 References -- Chapter 5. Variational transition state theory -- 5.1 Introduction -- 5.2 Gas phase reactions -- 5.3 Reactions in condensed phases -- 5.4 Summary and conclusions -- 5.5 Acknowledgements -- 5.6 References -- Chapter 6. Computational chemistry: attempting to simulate large molecular systems -- 6.1 Introduction -- 6.2 The long preparation and the seeding time: 1930 - 1960 -- 6.3 Quantum Chemistry and the Laboratory of Molecular Structure and Spectra, Chicago, 1960 -- 6.4 My Hartree - Fock, MC-SCF and density functional period: the 1960 decade -- 6.5 From Schrodinger to Newton -- my second simulation period. , 6.6 Statistical and fluid dynamic simulations, and also computers hardware development in the Hudson valley -- 6.7 Back to the beginning: a new approach to an old problem -- 6.8 Conclusions -- 6.9 Acknowledgements -- 6.10 References -- Chapter 7. The beginnings of coupled-cluster theory: an eyewitness account -- 7.1 'Prehistory' -- 7.2 Gestation -- 7.3 Birth -- 7.4 Growing pains -- 7.5 Maturation -- 7.6 Quo vadis? -- 7.7 Acknowledgements -- 7.8 References -- Chapter 8. Controlling quantum phenomena with photonic reagents -- 8.1 How can control of quantum dynamics phenomena be achieved? -- 8.2 Why does quantum control with photonic reagents appear to be so easy? -- 8.3 What is occurring during the process of controlling quantum dynamics phenomena? -- 8.4 Conclusion -- 8.5 References -- Chapter 9. First-principles calculations of anharmonic vibrational spectroscopy of large molecules -- 9.1 Introduction -- 9.2 Anharmonic vibrational spectroscopy methods -- 9.3 Ab initio vibrational spectroscopy -- 9.4 Applications and performance -- 9.5 Future directions -- 9.6 Acknowledgements -- 9.7 References -- Chapter 10. Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces -- 10.1 Introduction -- 10.2 Background -- 10.3 Minimization -- 10.4 Transition state optimization -- 10.5 Reaction path following -- 10.6 Summary and outlook -- 10.7 References -- Chapter 11. Progress in the quantum description of vibrational motion of polyatomic molecules -- 11.1 Introduction -- 11.2 Beyond the harmonic approximation -- 11.3 Vibrational CI theory -- 11.4 Current bottlenecks and future progress -- 11.5 Acknowledgements -- 11.6 References -- Chapter 12. Toward accurate computations in photobiology -- 12.1 Introduction -- 12.2 Ab initio quantum chemical methods for excited states -- 12.3 Fate of light energy in photobiology. , 12.4 From photobiology to biomimetic molecular switches -- 12.5 Conclusions -- 12.6 Acknowledgements -- 12.7 References -- Chapter 13. The nature of the chemical bond in the light of an energy decomposition analysis -- 13.1 Introduction -- 13.2 Energy decomposition analysis -- 13.3 Bonding in main-group compounds -- 13.4 Bonding in transition metal compounds -- 13.5 Conclusion -- 13.6 Acknowledgements -- 13.7 References -- Chapter 14. Superoperator many-body theory of molecular currents: non-equilibrium Green functions in real time -- 14.1 Introduction -- 14.2 Dyson equations for superoperator Green functions -- 14.3 The calculation of molecular currents -- 14.4 Discussion -- 14.5 Acknowledgements -- Appendix 14A: Superoperator expressions for the Keldysh Green functions -- Appendix 14B: Superoperator Green function expression for the current -- Appendix 14C: Self-energies for superoperator Green functions -- Appendix 14D: Dyson equations in the + /- representation -- Appendix 14E: Wick's theorem for superoperators -- 14.6 References -- Chapter 15. Role of computational chemistry in the theory of unimolecular reaction rates -- 15.1 Introduction -- 15.2 Role of computational chemistry -- 15.3 The future -- 15.4 Acknowledgements -- 15.5 References -- Chapter 16. Molecular dynamics: an account of its evolution -- 16.1 Introduction -- 16.2 Early days -- 16.3 Classical period of classical molecular dynamics -- 16.4 Quantum mechanics and molecular dynamics -- 16.5 Coarse grained and mesoscopic dynamics -- 16.6 Conclusion -- 16.7 Acknowledgements -- 16.8 References -- Chapter 17. Equations of motion methods for computing electron affinities and ionization potentials -- 17.1 Introduction -- 17.2 Basics of EOM theory as applied to EAs and IPs -- 17.3 Practical implementations of EOM theories for EAs and Ips -- 17.4 Some special cases -- 17.5 Summary. , 17.6 Acknowledgements -- 17.7 References -- Chapter 18. Multireference coupled cluster method based on the Brillouin -Wigner perturbation theory -- 18.1 Introduction -- 18.2 Single-reference versus multireference methods -- 18.3 Overview of multireference CC methods -- 18.4 Multireference Brillouin-Wigner coupled cluster method -- 18.5 Intruder states and size extensivity -- 18.6 Performance of the multireference Brillouin-Wigner CC method and applications -- 18.7 Summary -- 18.8 Acknowledgements -- 18.9 References -- Chapter 19. Electronic structure: the momentum perspective -- 19.1 Introduction -- 19.2 Momentum - space wave functions -- 19.3 Densities and density matrices -- 19.4 Properties of the momentum density -- 19.5 Experimental determination of momentum densities -- 19.6 Ab initio computations -- 19.7 Illustrative calculations -- 19.8 Concluding remarks -- 19.9 Acknowledgements -- 19.10 References -- Chapter 20. Recent advances in ab initio, density functional theory, and relativistic electronic structure theory -- 20.1 Introduction -- 20.2 Multireference perturbation theory and valence bond description of electronic structures of molecules -- 20.3 Long-range and other corrections for density functionals -- 20.4 Relativistic molecular theory -- 20.5 Summary -- 20.6 References -- Chapter 21. Semiempirical quantum-chemical methods in computational chemistry -- 21.1 Introduction -- 21.2 Historical overview -- 21.3 Established methods -- 21.4 Selected recent developments -- 21.5 Selected recent applications -- 21.6 Summary and outlook -- 21.7 Acknowledgements -- 21.8 References -- Chapter 22. Size-consistent state-specific multi-reference methods: a survey of some recent developments* -- 22.1 Introduction -- 22.2 The SS-MRCC formalism -- 22.3 Emergence of state-specific multi-reference perturbation theory SS-MRPT from SS-MRCC theory. , 22.4 Emergence of the SS-MRCEPA(I) methods from SS-MRCC -- 22.5 The size-extensive state-specific MRCC formalism using an IMS -- 22.6 Results and discussion -- 22.7 Summary and conclusions -- 22.8 Acknowledgements -- 22.9 References -- Chapter 23. The valence bond diagram approach: a paradigm for chemical reactivity -- 23.1 Introduction -- 23.2 VB diagrams for chemical reactivity -- 23.3 VBSCD-the origins of barriers in chemical reactions -- 23.4 Valence bond configuration mixing diagrams -- 23.5 Additional applications of VB diagrams -- 23.6 Prospective -- 23.7 Acknowledgements -- Appendix 23A: Computing mono-determinant VB wave functions with standard ab initio programs -- 23.8 References -- Chapter 24. Progress in the development of exchange-correlation functionals -- 24.1 Introduction -- 24.2 Kohn - Sham density functional theory -- 24.3 Exchange and correlation density functionals -- 24.4 Strategies for designing density functionals -- 24.5 Local density approximations -- 24.6 Density-gradient expansion -- 24.7 Constraint satisfaction -- 24.8 Modeling the exchange-correlation hole -- 24.9 Empirical fits -- 24.10 Mixing exact and approximate exchange -- 24.11 Implementation and performance -- 24.12 Conclusion -- 24.13 Acknowledgements -- 24.14 References -- Chapter 25. Multiconfigurational quantum chemistry -- 25.1 Introduction -- 25.2 The density matrix and the natural orbitals -- 25.3 The hydrogen molecule -- 25.4 Degeneracy and near degeneracy -- 25.5 Multiconfigurational wave functions -- 25.6 Dynamic correlation and the CASPT2 method -- 25.7 The relativistic regime -- 25.8 Three examples -- 25.9 Conclusions -- 25.10 Acknowledgements -- 25.11 References -- Chapter 26. Concepts of perturbation, orbital interaction, orbital mixing and orbital occupation -- 26.1 Introduction. , 26.2 Orbital interaction on the basis of effective one-electron Hamiltonian.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Chemical bonds -- Study and teaching. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (439 pages)
    Edition: 1st ed.
    ISBN: 9783527664726
    Language: English
    Note: Intro -- The Chemical Bond -- Contents -- Preface -- List of Contributors -- Chapter 1 The Physical Origin of Covalent Bonding -- 1.1 The Quest for a Physical Model of Covalent Bonding -- 1.2 Rigorous Basis for Conceptual Reasoning -- 1.2.1 Physical Origin of the Ground State -- 1.2.2 Physical Origin of Ground State Energy Differences -- 1.2.3 Relation between Kinetic and Potential Energies -- 1.3 Atoms in Molecules -- 1.3.1 Quantitative Bonding Analyses Require Quasi-Atoms in a Molecule -- 1.3.2 Primary and Secondary Energy Contributions -- 1.3.3 Identification of Quasi-Atoms in a Molecule -- 1.4 The One-Electron Basis of Covalent Binding: H2+ -- 1.4.1 Molecular Wave Function as a Superposition of Quasi-Atomic Orbitals -- 1.4.2 Molecular Electron Density and Gradient Density as Sums of Intra-atomic and Interatomic Contributions -- 1.4.2.1 Resolution of the Molecular Density -- 1.4.2.2 Resolution of the Molecular Gradient Density -- 1.4.3 Dependence of Delocalization and Interference on the Size of the Quasi-Atomic Orbitals -- 1.4.3.1 Charge Accumulation at the Bond Midpoint -- 1.4.3.2 Total Charge Accumulation in the Bond -- 1.4.3.3 Origin of the Relation between Interference and Quasi-Atomic Orbital Contraction/Expansion -- 1.4.4 Binding Energy as a Sum of Two Intra-atomic and Three Interatomic Contributions -- 1.4.5 Quantitative Characteristics of the Five Energy Contributions -- 1.4.5.1 Intra-atomic Deformation Energy: E intra=T intra + V intra -- 1.4.5.2 Quasi-Classical Interaction between the Atoms: V qc -- 1.4.5.3 Potential Interference Energy: V I -- 1.4.5.4 Kinetic Interference Energy: T I -- 1.4.5.5 Interference Energies and Quasi-Atomic Orbital Contraction and Expansion -- 1.4.6 Synergism of the Binding Energy Contributions along the Dissociation Curve. , 1.4.6.1 First Column: Zeroth Order Approximation to ψA, ψB by the 1sA, 1sB Hydrogen Atom Orbitals -- 1.4.6.2 Second Column: Optimal Spherical Approximation to ψA, ψB by the Scaled Orbitals 1s A*, 1s B* -- 1.4.6.3 Third Column: Exact Quasi-Atomic Orbitals ψA, ψB -- 1.4.6.4 Conclusion -- 1.4.7 Origin of Bonding at the Equilibrium Distance -- 1.4.7.1 Contributions to the Binding Energy -- 1.4.7.2 Energy Lowering By Electron Sharing -- 1.4.7.3 Energy Lowering by Quasi-Atomic Orbital Deformation -- 1.4.7.4 Variational Perspective -- 1.4.7.5 General Implications -- 1.5 The Effect of Electronic Interaction in the Covalent Electron Pair Bond: H2 -- 1.5.1 Quasi-Atomic Orbitals of the FORS Wave Function -- 1.5.2 FORS Wave Function and Density in Terms of Quasi-Atomic Orbitals -- 1.5.3 Binding Energy as a Sum of Two Intra-atomic and Five Interatomic Contributions -- 1.5.3.1 Overall Resolution -- 1.5.3.2 Interatomic Coulombic Contributions -- 1.5.3.3 Interatomic Interference Contributions -- 1.5.3.4 Binding Energy as a Sum of Two Intra-atomic and Five Interatomic Contributions -- 1.5.4 Quantitative Synergism of the Contributions to the Binding Energy -- 1.5.4.1 Quantitative Characteristics -- 1.5.4.2 Synergism along the Dissociation Curve -- 1.5.5 Origin of Bonding at the Equilibrium Distance -- 1.5.5.1 The Primary Mechanism as Exhibited by Choosing the Free-Atom Orbitals as Quasi-Atomic Orbitals -- 1.5.5.2 Effect of Quasi-Atomic Orbital Contraction -- 1.5.5.3 Effect of Polarization -- 1.5.5.4 Binding in the Electron Pair Bond of H2 -- 1.5.6 Electron Correlation Contribution to Bonding in H2 -- 1.6 Covalent Bonding in Molecules with More than Two Electrons: B2, C2, N2, O2, and F2 -- 1.6.1 Basis of Binding Energy Analysis -- 1.6.2 Origin of Binding at the Equilibrium Geometry -- 1.6.3 Synergism along the Dissociation Curve. , 1.6.4 Effect of Dynamic Correlation on Covalent Binding -- 1.7 Conclusions -- Acknowledgments -- References -- Chapter 2 Bridging Cultures -- 2.1 Introduction -- 2.2 A Short History of the MO/VB Rivalry -- 2.3 Mapping MO-Based Wave Functions to VB Wave Functions -- 2.4 Localized Bond Orbitals - A Pictorial Bridge between MO and VB Wave Functions -- 2.5 Block-Localized Wave Function Method -- 2.6 Generalized Valence Bond Theory: a Simple Bridge from VB to MOs -- 2.7 VB Reading of CASSCF Wave Functions -- 2.8 Natural Bonding Orbitals and Natural Resonance Theory - a Direct Bridge between MO and VB -- 2.8.1 Natural Bonding Orbitals -- 2.8.2 Natural Resonance Theory -- 2.9 The Mythical Conflict of Hybrid Orbitals with Photoelectron Spectroscopy -- 2.10 Conclusion -- Appendix -- References -- Chapter 3 The NBO View of Chemical Bonding -- 3.1 Introduction -- 3.2 Natural Bond Orbital Methods -- 3.2.1 NBO Analysis of Free Atoms and Atoms in Molecular Environments -- 3.2.2 NBO Analysis of Simple Chemical Bonds: LiOH and H2O -- 3.2.3 Lewis-Like Structures of the P- and D-Block Elements -- 3.2.4 Unrestricted Calculations and Different Lewis Structures for Different Spins (DLDS) -- 3.3 Beyond Lewis-Like Bonding: The Donor-Acceptor Paradigm -- 3.3.1 Hyperconjugative Effects in Bond Bending -- 3.3.2 C3H3 Cation, Anion, and Radical: Aromaticity, Jahn-Teller Distortions, Resonance Structures, and 3c/2e Bonding -- 3.3.3 3c/4e Hypervalency -- 3.4 Conclusion -- References -- Chapter 4 The EDA Perspective of Chemical Bonding -- 4.1 Introduction -- 4.2 Basic Principles of the EDA Method -- 4.3 The EDA-NOCV Method -- 4.4 Chemical Bonding in H2 and N2 -- 4.5 Comparison of Bonding in Isoelectronic N2, CO and BF -- 4.6 Bonding in the Diatomic Molecules E2 of the First Octal Row E = Li-F -- 4.7 Bonding in the Dihalogens F2 - I2 -- 4.8 Carbon-Element Bonding in CH3-X. , 4.9 EDA-NOCV Analysis of Chemical Bonding in the Transition State -- 4.10 Summary and Conclusion -- Acknowledgements -- References -- Chapter 5 The Valence Bond Perspective of the Chemical Bond -- 5.1 Introduction -- 5.2 A Brief Historical Recounting of the Development of the Chemical Bond Notion -- 5.3 The Pauling-Lewis VB Perspective of the Electron-Pair Bond -- 5.4 A Preamble to the Modern VB Perspective of the Electron-Pair Bond -- 5.5 Theoretical Characterization of Bond Types by VB and Other Methods -- 5.5.1 VB Characterization of Bond Types -- 5.5.2 ELF and AIM Characterization of Bond Types -- 5.5.2.1 ELF Characterization of Bond Types -- 5.5.2.2 AIM Characterization of Bond Types -- 5.6 Trends of Bond Types Revealed by VB, AIM and ELF -- 5.6.1 VB and AIM Converge -- 5.6.2 VB and ELF Converge -- 5.6.3 Convergence of VB, ELF and AIM -- 5.6.4 The Three Bonding Families -- 5.7 Physical Origins of CS Bonding -- 5.7.1 The Role of Atomic Size -- 5.7.2 The Role of Pauli Repulsion Pressure -- 5.8 Global Behavior of Electron-Pair Bonds -- 5.9 Additional Factors of CS Bonding -- 5.10 Can a Covalent Bond Become CS Bonds by Substitution? -- 5.11 Experimental Manifestations of CS Bonding -- 5.11.1 Marks of CS Bonding from Electron Density Measurements -- 5.11.2 Marks of CS Bonding in Atom Transfer Reactivity -- 5.11.3 Marks of CS Bonding in the Ionic Chemistry of Silicon in Condensed Phases -- 5.12 Scope and Territory of CS Bonding -- 5.12.1 Concluding Remarks -- Appendix -- 5.A Modern VB Methods -- 5.B The Virial Theorem -- 5.C Resonance Interaction and Kinetic Energy -- References -- Chapter 6 The Block-Localized Wavefunction (BLW) Perspective of Chemical Bonding -- 6.1 Introduction -- 6.2 Methodology Evolutions -- 6.2.1 Simplifying Ab Initio VB Theory to the BLW Method -- 6.2.2 BLW Method at the DFT Level. , 6.2.3 Decomposing Intermolecular Interaction Energies with the BLW Method -- 6.2.4 Probing Electron Transfer with BLW-Based Two-State Models -- 6.3 Exemplary Applications -- 6.3.1 Benzene: Evaluating the Geometrical and Energetic Impacts from π Conjugation -- 6.3.2 Butadiene: The Rotation Barrier Versus the Conjugation Magnitude -- 6.3.3 Ethane: What Force(s) Governs the Conformational Preference? -- 6.3.4 H3B-NH3: Quantifying the Electron Transfer Effect in Donor-Acceptor Complexes -- 6.4 Conclusion -- 6.5 Outlook -- Acknowledgements -- References -- Chapter 7 The Conceptual Density Functional Theory Perspective of Bonding -- 7.1 Introduction -- 7.2 Basics of DFT: The Density as a Fundamental Carrier of Information and How to Obtain It -- 7.3 Conceptual DFT: A Perturbative Approach to Chemical Reactivity and the Process of Bond Formation -- 7.3.1 Basics: Global and Local Response Functions -- 7.3.1.1 Global Response Functions -- 7.3.1.2 Local Response Functions -- 7.3.1.3 Nonlocal Response Functions: the Linear Response Kernel -- 7.3.2 Combined use of DFT-Based Reactivity Indices and Principles in the Study of Chemical Bonding -- 7.3.2.1 Principle of Electronegativity Equalization -- 7.3.2.2 Hard and Soft Acids and Bases Principle -- 7.3.2.3 Berlin's Approach in a Conceptual DFT Context: the Nuclear Fukui Function -- 7.4 Conclusions -- Acknowledgments -- References -- Chapter 8 The QTAIM Perspective of Chemical Bonding -- 8.1 Introduction -- 8.2 Birth of QTAIM: the Quantum Atom -- 8.3 The Topological Atom: is it also a Quantum Atom? -- 8.4 The Bond Critical Point and the Bond Path -- 8.5 Energy Partitioning Revisited -- 8.6 Conclusion -- Acknowledgment -- References -- Chapter 9 The Experimental Density Perspective of Chemical Bonding -- 9.1 Introduction -- 9.2 Asphericity Shifts and the Breakdown of the Standard X-ray Model. , 9.3 Precision of Charge Density Distributions in Experimental and Theoretical Studies.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Chemical bonds -- Congresses. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (568 pages)
    Edition: 1st ed.
    ISBN: 9783527664689
    DDC: 541.224
    Language: English
    Note: Intro -- The Chemical Bond -- Contents -- Preface -- List of Contributors -- Chapter 1 Chemical Bonding of Main-Group Elements -- 1.1 Introduction and Definitions -- 1.2 The Lack of Radial Nodes of the 2p Shell Accounts for Most of the Peculiarities of the Chemistry of the 2p-Elements -- 1.2.1 High Electronegativity and Small Size of the 2p-Elements -- 1.2.1.1 Hybridization Defects -- 1.2.2 The Inert-Pair Effect and its Dependence on Partial Charge of the Central Atom -- 1.2.3 Stereo-Chemically Active versus Inactive Lone Pairs -- 1.2.4 The Multiple-Bond Paradigm and the Question of Bond Strengths -- 1.2.5 Influence of Hybridization Defects on Magnetic-Resonance Parameters -- 1.3 The Role of the Outer d-Orbitals in Bonding -- 1.4 Secondary Periodicities: Incomplete-Screening and Relativistic Effects -- 1.5 "Honorary d-Elements": the Peculiarities of Structure and Bonding of the Heavy Group 2 Elements -- 1.6 Concluding Remarks -- References -- Chapter 2 Multiple Bonding of Heavy Main-Group Atoms -- 2.1 Introduction -- 2.2 Bonding Analysis of Diatomic Molecules E2 (E = N - Bi) -- 2.3 Comparative Bonding Analysis of N2 and P2 with N4 and P4 -- 2.4 Bonding Analysis of the Tetrylynes HEEH (E = C - Pb) -- 2.5 Explaining the Different Structures of the Tetrylynes HEEH (E = C - Pb) -- 2.6 Energy Decomposition Analysis of the Tetrylynes HEEH (E = C - Pb) -- 2.7 Conclusion -- Acknowledgment -- References -- Chapter 3 The Role of Recoupled Pair Bonding in Hypervalent Molecules -- 3.1 Introduction -- 3.2 Multireference Wavefunction Treatment of Bonding -- 3.3 Low-Lying States of SF and OF -- 3.4 Low-Lying States of SF2 and OF2 (and Beyond) -- 3.4.1 SF2(X1A1) -- 3.4.2 SF2(a3B1) -- 3.4.3 SF2(b3A2) -- 3.4.4 OF2(X1A1) -- 3.4.5 Triplet states of OF2 -- 3.4.6 SF3 and SF4 -- 3.4.7 SF5 and SF6 -- 3.5 Comparison to Other Models -- 3.5.1 Rundle-Pimentel 3c-4e Model. , 3.5.2 Diabatic States Model -- 3.5.3 Democracy Principle -- 3.6 Concluding Remarks -- References -- Chapter 4 Donor-Acceptor Complexes of Main-Group Elements -- 4.1 Introduction -- 4.2 Single-Center Complexes EL2 -- 4.2.1 Carbones CL2 -- 4.2.2 Isoelectronic Group 15 and Group 13 Homologues (N+)L2 and (BH)L2 -- 4.2.3 Donor-Acceptor Bonding in Heavier Tetrylenes ER2 and Tetrylones EL2 (E = Si - Pb) -- 4.3 Two-Center Complexes E2L2 -- 4.3.1 Two-Center Group 14 Complexes Si2L2 - Pb2L2 (L = NHC) -- 4.3.2 Two-Center Group 13 and Group 15 Complexes B2L2 and N2L2 -- 4.4 Summary and Conclusion -- References -- Chapter 5 Electron-Counting Rules in Cluster Bonding - Polyhedral Boranes, Elemental Boron, and Boron-Rich Solids -- 5.1 Introduction -- 5.2 Wade's Rule -- 5.3 Localized Bonding Schemes for Bonding in Polyhedral Boranes -- 5.4 4n+2 Interstitial Electron Rule and Ring-Cap Orbital Overlap Compatibility -- 5.5 Capping Principle -- 5.6 Electronic Requirement of Condensed Polyhedral Boranes - mno Rule -- 5.7 Factors Affecting the Stability of Condensed Polyhedral Clusters -- 5.7.1 Exo-polyhedral Interactions -- 5.7.2 Orbital Compatibility -- 5.8 Hypoelectronic Metallaboranes -- 5.9 Electronic Structure of Elemental Boron and Boron-Rich Metal Borides - Application of Electron-Counting Rules -- 5.9.1 α-Rhombohedral Boron -- 5.9.2 β-Rhombohedral Boron -- 5.9.3 Alkali Metal-Indium Clusters -- 5.9.4 Electronic Structure of Mg~5B44 -- 5.10 Conclusion -- References -- Chapter 6 Bound Triplet Pairs in the Highest Spin States of Monovalent Metal Clusters -- 6.1 Introduction -- 6.2 Can Triplet Pairs Be Bonded? -- 6.2.1 A Prototypical Bound Triplet Pair in 3Li2 -- 6.2.2 The NPFM Bonded Series of n+1Li_n (n=2-10) -- 6.3 Origins of NPFM Bonding in n+1Li_n Clusters -- 6.3.1 Orbital Cartoons for the NPFM Bonding of the 3Σu+ State of Li2. , 6.4 Generalization of NPFM Bonding in n+1Li_n Clusters -- 6.4.1 VB Mixing Diagram Representation of the Bonding in 3Li_2 -- 6.4.2 VB Modeling of n+1Li_n Patterns -- 6.5 NPFM Bonding in Coinage Metal Clusters -- 6.5.1 Structures and Bonding of Coinage Metal NPFM Clusters -- 6.6 Valence Bond Modeling of the Bonding in NPFM Clusters of the Coinage Metals -- 6.7 NPFM Bonding: Resonating Bound Triplet Pairs -- 6.8 Concluding Remarks: Bound Triplet Pairs -- Appendix -- 6.A Methods and Some Details of Calculations -- 6.B Symmetry Assignment of the VB Wave Function -- 6.C The VB Configuration Count and the Expressions for De for NPFM Clusters -- References -- Chapter 7 Chemical Bonding in Transition Metal Compounds -- 7.1 Introduction -- 7.2 Valence Orbitals and Hybridization in Electron-Sharing Bonds of Transition Metals -- 7.3 Carbonyl Complexes TM(CO)6q (TMq = Hf2-, Ta-, W, Re+, Os2+, Ir3+) -- 7.4 Phosphane Complexes (CO)5TM-PR3 and N-Heterocyclic Carbene Complexes (CO)5TM-NHC (TM = Cr, Mo, W) -- 7.5 Ethylene and Acetylene Complexes (CO)5TM-C2Hn and Cl4TM-C2Hn (TM = Cr, Mo, W) -- 7.6 Group-13 Diyl Complexes (CO)4Fe-ER (E = B - Tl -- R = Ph, Cp) -- 7.7 Ferrocene Fe(η5-Cp)2 and Bis(benzene)chromium Cr(η6-Bz)2 -- 7.8 Cluster, Complex, or Electron-Sharing Compound? Chemical Bonding in Mo(EH)12 and Pd(EH)8 (E = Zn, Cd, Hg) -- 7.9 Metal-Metal Multiple Bonding -- 7.10 Summary -- Acknowledgment -- References -- Chapter 8 Chemical Bonding in Open-Shell Transition-Metal Complexes -- 8.1 Introduction -- 8.2 Theoretical Foundations -- 8.2.1 Definition of Open-Shell Electronic Structures -- 8.2.2 The Configuration Interaction Ansatz -- 8.2.2.1 The Truncation Procedure -- 8.2.2.2 Density Matrices -- 8.2.3 Ab Initio Single-Reference Approaches -- 8.2.4 Ab Initio Multireference Approaches -- 8.2.5 Density Functional Theory for Open-Shell Molecules. , 8.3 Qualitative Interpretation -- 8.3.1 Local Spin -- 8.3.2 Broken Spin Symmetry -- 8.3.3 Analysis of Bond Orders -- 8.3.4 Atoms in Molecules -- 8.3.5 Entanglement Measures for Single- and Multireference Correlation Effects -- 8.4 Spin Density Distributions-A Case Study -- 8.4.1 A One-Determinant Picture -- 8.4.2 A Multiconfigurational Study -- 8.5 Summary -- Acknowledgments -- References -- Chapter 9 Modeling Metal-Metal Multiple Bonds with Multireference Quantum Chemical Methods -- 9.1 Introduction -- 9.2 Multireference Methods and Effective Bond Orders -- 9.3 The Multiple Bond in Re2Cl82- -- 9.4 Homonuclear Diatomic Molecules: Cr2, Mo2, and W2 -- 9.5 Cr2, Mo2, and W2 Containing Complexes -- 9.6 Fe2 Complexes -- 9.7 Concluding Remarks -- Acknowledgment -- References -- Chapter 10 The Quantum Chemistry of Transition Metal Surface Bonding and Reactivity -- 10.1 Introduction -- 10.2 The Elementary Quantum-Chemical Model of the Surface Chemical Bond -- 10.3 Quantum Chemistry of the Surface Chemical Bond -- 10.3.1 Adatom Adsorption Energy Dependence on Coordinative Unsaturation of Surface Atoms -- 10.3.2 Adatom Adsorption Energy as a Function of Metal Position in the Periodic System -- 10.3.3 Molecular Adsorption -- Adsorption of CO -- 10.3.4 Surface Group Orbitals -- 10.3.5 Adsorbate Coordination in Relation to Adsorbate Valence -- 10.4 Metal Particle Composition and Size Dependence -- 10.4.1 Alloying: Coordinative Unsaturation versus Increased Overlap Energies -- 10.4.2 Particle Size Dependence -- 10.5 Lateral Interactions -- Reconstruction -- 10.6 Adsorbate Bond Activation and Formation -- 10.6.1 The Reactivity of Different Metal Surfaces -- 10.6.2 The Quantum-Chemical View of Bond Activation -- 10.6.2.1 Activation of the Molecular π Bond (Particle Shape Dependence) -- 10.6.2.2 The Uniqueness of the (100) Surface. , 10.6.2.3 Activation of the Molecular σ Bond -- CH4 and NH3 -- 10.7 Transition State Analysis: A Summary -- References -- Chapter 11 Chemical Bonding of Lanthanides and Actinides -- 11.1 Introduction -- 11.2 Technical Issues -- 11.3 The Energy Decomposition Approach to the Bonding in f Block Compounds -- 11.3.1 A Comparison of U-N and U-O Bonding in Uranyl(VI) Complexes -- 11.3.2 Toward a 32-Electron Rule -- 11.4 f Block Applications of the Electron Localization Function -- 11.5 Does Covalency Increase or Decrease across the Actinide Series? -- 11.6 Multi-configurational Descriptions of Bonding in f Element Complexes -- 11.6.1 U2: A Quintuply Bonded Actinide Dimer -- 11.6.2 Bonding in the Actinyls -- 11.6.3 Oxidation State Ambiguity in the f Block Metallocenes -- 11.7 Concluding Remarks -- References -- Chapter 12 Direct Estimate of Conjugation, Hyperconjugation, and Aromaticity with the Energy Decomposition Analysis Method -- 12.1 Introduction -- 12.2 The EDA Method -- 12.3 Conjugation -- 12.3.1 Conjugation in 1,3-Butadienes, 1,3-Butadiyne, Polyenes, and Enones -- 12.3.2 Correlation with Experimental Data -- 12.4 Hyperconjugation -- 12.4.1 Hyperconjugation in Ethane and Ethane-Like Compounds -- 12.4.2 Group 14 β-Effect -- 12.5 Aromaticity -- 12.5.1 Aromaticity in Neutral Exocyclic Substituted Cyclopropenes (HC)2C = X -- 12.5.2 Aromaticity in Group 14 Homologs of the Cyclopropenylium Cation -- 12.5.3 Aromaticity in Metallabenzenes -- 12.6 Concluding Remarks -- References -- Chapter 13 Magnetic Properties of Aromatic Compounds and Aromatic Transition States -- 13.1 Introduction -- 13.2 A Short Historical Review of Aromaticity -- 13.3 Magnetic Properties of Molecules -- 13.3.1 Exaltation and Anisotropy of Magnetic Susceptibility -- 13.3.2 Chemical Shifts in NMR -- 13.3.3 Quantum Theoretical Treatment -- 13.4 Examples -- 13.4.1 Benzene and Borazine. , 13.4.2 Pyridine, Phosphabenzene, and Silabenzene.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Berlin Heidelberg : Springer
    Keywords: Biochemistry ; Chemistry ; Chemistry, Organic ; Chemistry, inorganic ; Aufsatzsammlung ; Katalyse ; Übergangsmetallverbindungen ; Reaktionsmechanismus
    Type of Medium: Online Resource
    Pages: Online-Ressource , graph. Darst.
    Edition: Online-Ausg. 2005 Springer eBook Collection. Chemistry and Materials Science
    ISBN: 9783540314448
    Series Statement: Topics in organometallic chemistry 12
    DDC: 540
    RVK:
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Berlin, Heidelberg : Springer Berlin Heidelberg
    Keywords: Chemistry, inorganic ; Chemistry, Organic ; Biochemistry ; Chemistry ; Aufsatzsammlung ; Katalyse ; Übergangsmetallverbindungen ; Reaktionsmechanismus
    Type of Medium: Online Resource
    Pages: Online-Ressource (IX, 266 p. Also available online, digital)
    ISBN: 9783540314448
    Series Statement: Topics in Organometallic Chemistry 12
    RVK:
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Organometallics 14 (1995), S. 423-426 
    ISSN: 1520-6041
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1520-6041
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1520-6041
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...