GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A diploid and a haploid strain of Pichia anomala were tested for their biocontrol ability against the spoilage mould Penicillium roqueforti in glass tubes filled with grain at two water activities (aw). At aw 0.98, the two yeast strains grew and inhibited mould growth equally well and showed similar patterns of ethyl acetate production, reaching maximum values of 10–14 μg ml−1 headspace. At aw 0.95, both growth and biocontrol performance of the haploid strain were reduced. Ethyl acetate formation was also substantially reduced, with maximum headspace concentrations of 4 μg ml−1. We conclude that ethyl acetate is a major component of the anti-mould activity. The inhibitory effect of ethyl acetate was confirmed in a bioassay where the pure compound reduced biomass production of P. roqueforti.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The σB transcription factor of the bacterium Bacillus subtilis is activated by growth-limiting energy or environmental challenge to direct the synthesis of more than 100 general stress proteins. Although the signal transduction pathway that conveys these stress signals to σB is becoming increasingly well understood, how environmental or energy stress signals enter this pathway remains unknown. We show here that two PP2C serine phosphatases — RsbP, which is required for response to energy stress, and RsbU, which is required for response to environmental stress — each converge on the RsbV regulator of σB. According to the current understanding of σB regulation, in unstressed cells the phosphorylated RsbV anti-anti-σ is unable to complex the RsbW anti-σ, which is then free to bind and inactivate σB. We can now advance the model that either PP2C phosphatase, when triggered by its particular class of stress, can remove the phosphate from RsbV and thereby activate σB. The action of the previously described RsbU is known to be controlled by dedicated upstream signalling components that are activated by environmental stress. The action of the RsbP phosphatase described here requires an energy stress, which we suggest is sensed, at least in part, by the PAS domain in the amino-terminal region of the RsbP phosphatase. In other bacterial signalling proteins, similar PAS domains and their associated chromophores directly sense changes in intracellular redox potential to control the activity of a linked output domain.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...