GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 8279-8283 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: High-quality strain-relaxed SiGe templates with a low threading dislocation density and smooth surface are critical for device performance. In this work, SiGe films on low temperature Si buffer layers were grown by solid-source molecular beam epitaxy and characterized by atomic force microscope, double-axis x-ray diffraction, photoluminescence spectroscopy, and Raman spectroscopy. Effects of the growth temperature and the thickness of the low temperature Si buffer were studied. It was demonstrated that when using proper growth conditions for the low temperature Si buffer the Si buffer became tensily strained and gave rise to the compliant effect. The lattice mismatch between the SiGe and the Si buffer layer was reduced. A 500 nm Si0.7Ge0.3 film with a low threading dislocation density as well as smooth surface was obtained by this method. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 454-456 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Relaxed SiGe attracted much interest due to the applications for strained Si/SiGe high electron mobility transistor, metal-oxide-semiconductor field-effect transistor, heterojunction bipolar transistor, and other devices. High-quality relaxed SiGe templates, especially those with a low threading dislocation density and smooth surface, are critical for device performance. In this work, SiGe films on low-temperature Si buffer layers were grown by solid-source molecular-beam epitaxy and characterized by atomic force microscope, double-axis x-ray diffraction, and photoluminescence spectroscopy. It was demonstrated that, with the proper growth temperature and Si buffer thickness, the low-temperature Si buffer became tensily strained and reduced the lattice mismatch between the SiGe and the Si buffer layer. This performance is similar to that of the compliant substrate: a thin substrate that shares the mismatch strain in heteroepitaxy. Due to the smaller mismatch, misfit dislocation and threading dislocation densities were lower. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...