GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Phelps, Leanne N; Broennimann, Olivier; Manning, Katie; Timpson, Adrian; Jousse, Hélène; Mariethoz, Gregoire; Fordham, Damien A; Shanahan, Timothy M; Davis, Basil A S; Guisan, Antoine (2020): Reconstructing the climatic niche breadth of land use for animal production during the African Holocene. Global Ecology and Biogeography, 29(1), 127-147, https://doi.org/10.1111/geb.13015
    Publication Date: 2023-01-30
    Description: This dataset is associated with Phelps et al. (2019) and is comprised of archaeological information from Holocene faunal assemblages in Africa, including assemblage, radiocarbon and taxonomic information. This dataset was modified from Jousse 2017 and associated datasets compiled by H. Jousse.
    Keywords: African Holocene; animal production; archaeology; faunal remains; historic land use; husbandry; land use; niche breadth; prehistoric land use
    Type: Dataset
    Format: application/zip, 97.3 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ullah, Hadayet; Nagelkerken, Ivan; Goldenberg, Silvan Urs; Fordham, Damien A; Loreau, Jean-Paul (2018): Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biology, 16(1), e2003446, https://doi.org/10.1371/journal.pbio.2003446
    Publication Date: 2024-03-15
    Description: Global warming and ocean acidification are forecast to exert significant impacts on marine ecosystems worldwide. However, most of these projections are based on ecological proxies or experiments on single species or simplified food webs. How energy fluxes are likely to change in marine food webs in response to future climates remains unclear, hampering forecasts of ecosystem functioning. Using a sophisticated mesocosm experiment, we model energy flows through a species-rich multilevel food web, with live habitats, natural abiotic variability, and the potential for intra- and intergenerational adaptation. We show experimentally that the combined stress of acidification and warming reduced energy flows from the first trophic level (primary producers and detritus) to the second (herbivores), and from the second to the third trophic level (carnivores). Warming in isolation also reduced the energy flow from herbivores to carnivores, the efficiency of energy transfer from primary producers and detritus to herbivores and detritivores, and the living biomass of detritivores, herbivores, and carnivores. Whilst warming and acidification jointly boosted primary producer biomass through an expansion of cyanobacteria, this biomass was converted to detritus rather than to biomass at higher trophic levels-i.e., production was constrained to the base of the food web. In contrast, ocean acidification affected the food web positively by enhancing trophic flow from detritus and primary producers to herbivores, and by increasing the biomass of carnivores. Our results show how future climate change can potentially weaken marine food webs through reduced energy flow to higher trophic levels and a shift towards a more detritus-based system, leading to food web simplification and altered producer–consumer dynamics, both of which have important implications for the structuring of benthic communities.
    Keywords: Absolute flows; Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass; Biomass/Abundance/Elemental composition; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Coverage; Entire community; Experiment duration; Finn's cycling index; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Functional group; Identification; Laboratory experiment; Mesocosm or benthocosm; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; Percentage; pH; pH, standard deviation; Rocky-shore community; Salinity; Salinity, standard deviation; South Pacific; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Transfer efficiency; Treatment; Trophic level description; Type
    Type: Dataset
    Format: text/tab-separated-values, 12828 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-22
    Description: Ocean warming and species exploitation have already caused large‐scale reorganization of biological communities across the world. Accurate projections of future biodiversity change require a comprehensive understanding of how entire communities respond to global change. We combined a time‐dynamic integrated food web modeling approach (Ecosim) with previous data from community‐level mesocosm experiments to determine the independent and combined effects of ocean warming, ocean acidification and fisheries exploitation on a well‐managed temperate coastal ecosystem. The mesocosm parameters enabled important physiological and behavioral responses to climate stressors to be projected for trophic levels ranging from primary producers to top predators, including sharks. Through model simulations, we show that under sustainable rates of fisheries exploitation, near‐future warming or ocean acidification in isolation could benefit species biomass at higher trophic levels (e.g., mammals, birds, and demersal finfish) in their current climate ranges, with the exception of small pelagic fishes. However, under warming and acidification combined, biomass increases at higher trophic levels will be lower or absent, while in the longer term reduced productivity of prey species is unlikely to support the increased biomass at the top of the food web. We also show that increases in exploitation will suppress any positive effects of human‐driven climate change, causing individual species biomass to decrease at higher trophic levels. Nevertheless, total future potential biomass of some fisheries species in temperate areas might remain high, particularly under acidification, because unharvested opportunistic species will likely benefit from decreased competition and show an increase in biomass. Ecological indicators of species composition such as the Shannon diversity index decline under all climate change scenarios, suggesting a trade‐off between biomass gain and functional diversity. By coupling parameters from multilevel mesocosm food web experiments with dynamic food web models, we were able to simulate the generative mechanisms that drive complex responses of temperate marine ecosystems to global change. This approach, which blends theory with experimental data, provides new prospects for forecasting climate‐driven biodiversity change and its effects on ecosystem processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...