GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2019-07-16
    Description: Nineteen labs representing nine nations participated in the GEOTRACES intercalibration initiative that determined concentrations of 232Th, 230Th, 231Pa or 10Be in seawater, suspended particles or sediments. Results generally demonstrated good agreement among labs that analyzed marine sediments. Two sets of seawater samples, aliquots of particulate material filtered in situ, and/or aliquots of biogenic sediments were distributed to participating labs. Internal consistency among participating labs improved substantially between the first and second set of seawater samples. Contamination was a serious problem for 232Th. Standard Niskin™ bottles introduced no detectable contamination, whereas sample containers, reagents and labware were implicated as sources of contamination. No detectable differences in concentrations of dissolved 232Th, 230Th or 231Pa were observed among samples of seawater filtered through Nuclepore ™, Supor ™ or QMA™ (quartz) filters with pore diameters ranging between 0.4 and 1.0 μm. Isotope yield monitors equilibrate with dissolved Th in seawater on a time scale of much less than one day. Samples of filtered seawater acidified to a pH between 1.7 and 1.8 experienced no detectable loss of dissolved Th or Pa during storage for up to three years. The Bermuda Atlantic Time Series station will serve as a GEOTRACES baseline station for future intercalibration of 232Th and 230Th concentrations in seawater. Efforts to improve blanks and standard calibration are ongoing, as is the development of methods to determine concentrations of particulate nuclides, tests of different filtration methods, and an increasing awareness of the need to define protocols for reporting uncertainties.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Earth and Planetary Science Letters, ELSEVIER SCIENCE BV, 369-37, pp. 86-97, ISSN: 0012-821X
    Publication Date: 2019-07-17
    Description: Boundary scavenging, or the enhanced removal of adsorption-prone elements from the ocean in areas of high particle flux, is an often cited, though not well-quantified, concept used to understand the oceanic distribution of many trace metals. Because 230Th and 231Pa are produced uniformly from uranium decay and removed differentially by scavenging, the process of boundary scavenging can bee lucidated by a more detailed knowledge of their water column distributions. To this end, filtered seawater was collected across the gradients in particle flux which span the subarctic Pacific: in the west during the Innovative North Pacific Experiment (INOPEX) and in the east along LineP. Lateral concentration gradients of dissolved 230Th are small throughout the subarcticPacific at 12 sites of variable particle flux. This contradicts the prediction of the traditional boundary scavenging model. A compilation of water column data from throughout the North Pacific reveals much larger lateral concentration gradients for 230Th between the subarctic North Pacific and subtropical gyre, over lateral gradients in scavenging intensity similar to those found within the subarctic. This reflects a biogeochemical-province aspect to scavenging. Upper water column distributions of 231Pa and 231Pa/230Th ratio are consistent with the influence of scavenging by biogenic opal, while deep waters (〉2.5 km) reveal an additional 231Pa sink possibly related to manganese oxides produced at continental margins or ridge crests.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...