GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: Seaweed (macroalgae) has attracted attention globally given its potential for climate change mitigation. A topical and contentious question is: Can seaweeds' contribution to climate change mitigation be enhanced at globally meaningful scales? Here, we provide an overview of the pressing research needs surrounding the potential role of seaweed in climate change mitigation and current scientific consensus via eight key research challenges. There are four categories where seaweed has been suggested to be used for climate change mitigation: 1) protecting and restoring wild seaweed forests with potential climate change mitigation co-benefits; 2) expanding sustainable nearshore seaweed aquaculture with potential climate change mitigation co-benefits; 3) offsetting industrial CO2 emissions using seaweed products for emission abatement; and 4) sinking seaweed into the deep sea to sequester CO2. Uncertainties remain about quantification of the net impact of carbon export from seaweed restoration and seaweed farming sites on atmospheric CO2. Evidence suggests that nearshore seaweed farming contributes to carbon storage in sediments below farm sites, but how scalable is this process? Products from seaweed aquaculture, such as the livestock methane-reducing seaweed Asparagopsis or low carbon food resources show promise for climate change mitigation, yet the carbon footprint and emission abatement potential remains unquantified for most seaweed products. Similarly, purposely cultivating then sinking seaweed biomass in the open ocean raises ecological concerns and the climate change mitigation potential of this concept is poorly constrained. Improving the tracing of seaweed carbon export to ocean sinks is a critical step in seaweed carbon accounting. Despite carbon accounting uncertainties, seaweed provides many other ecosystem services that justify conservation and restoration and the uptake of seaweed aquaculture will contribute to the United Nations Sustainable Development Goals. However, we caution that verified seaweed carbon accounting and associated sustainability thresholds are needed before large-scale investment into climate change mitigation from seaweed projects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Highlights • A large body of literature exists on extreme cold ocean temperature events. • These events have well documented negative impacts but no consistent definition. • We propose here a definition for use in the detection of marine cold-spells (MCSs). • MCSs are decreasing in count, duration, and intensity over most ocean surfaces. • MCSs are increasing in count and duration in the Southern Ocean. Characterising ocean temperature variability and extremes is fundamental for understanding the thermal bounds in which marine ecosystems have adapted. While there is growing evidence of how marine heatwaves threaten marine ecosystems, prolonged periods of extremely cold ocean temperatures, marine cold-spells, have received less global attention. We synthesize the literature on cold ocean temperature extremes and their ecological impacts and physical mechanisms. Ecological impacts of these events were observed across a range of species and biophysical processes, including mass mortalities, range shifts, marine habitat loss, and altered phenology. The development of marine cold-spells is often due to wind-induced ocean processes, but a range of physical mechanisms are documented in the literature. Given the need for consistent comparison of marine cold-spells, we develop a definition for detecting these events from temperature time series and for classifying them into four categories. This definition is used to consistently detect marine cold-spells globally over the satellite record and to compare the characteristics of notable cold events. Globally, marine cold-spells’ occurrence, duration, and intensity are decreasing, with some areas, such as the Southern Ocean, showing signs of increase over the past 15 years. All marine cold-spell categories are affected by these decreases, with the exception of “IV Extreme” events, which were so rare that there has been little decrease. While decreasing occurrences of marine cold-spells could be viewed as providing a beneficial reduction in cold stress for marine ecosystems, fewer cold spells will alter the temperature regime that marine ecosystems experience and could have important consequences on ecological structure and function.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-23
    Description: The Arctic climate is changing rapidly. The warming and resultant longer open water periods suggest a potential for expansion of marine vegetation along the vast Arctic coastline. We compiled and reviewed the scattered time series on Arctic marine vegetation and explored trends for macroalgae and eelgrass (Zostera marina). We identified a total of 38 sites, distributed between Arctic coastal regions in Alaska, Canada, Greenland, Iceland, Norway/Svalbard, and Russia, having time series extending into the 21st Century. The majority of these exhibited increase in abundance, productivity or species richness, and/or expansion of geographical distribution limits, several time series showed no significant trend. Only four time series displayed a negative trend, largely due to urchin grazing or increased turbidity. Overall, the observations support with medium confidence (i.e., 5–8 in 10 chance of being correct, adopting the IPCC confidence scale) the prediction that macrophytes are expanding in the Arctic. Species distribution modeling was challenged by limited observations and lack of information on substrate, but suggested a current (2000– 2017) potential pan-Arctic macroalgal distribution area of 820.000 km2 (145.000 km2 intertidal, 675.000 km2 subtidal), representing an increase of about 30% for subtidaland 6% for intertidal macroalgae since 1940–1950, and associated polar migration rates averaging 18–23 km decade−1 . Adjusting the potential macroalgal distribution area by the fraction of shores represented by cliffs halves the estimate (412,634 km2 ). Warming and reduced sea ice cover along the Arctic coastlines are expected to stimulate further expansion of marine vegetation from boreal latitudes. The changes likely affect the functioning of coastal Arctic ecosystems because of the vegetation’s roles as habitat, and for carbon and nutrient cycling and storage. We encourage apan-Arctic science- and management agenda to incorporate marine vegetation into a coherent understanding of Arctic changes by quantifying distribution and status beyond the scattered studies now available to develop sustainable management strategies for these important ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goldsmit, J., Schlegel, R. W., Filbee-Dexter, K., MacGregor, K. A., Johnson, L. E., Mundy, C. J., Savoie, A. M., McKindsey, C. W., Howland, K. L., & Archambault, P. Kelp in the Eastern Canadian Arctic: current and future predictions of habitat suitability and cover. Frontiers in Marine Science, 18, (2021): 742209. https://doi.org/10.3389/fmars.2021.742209
    Description: Climate change is transforming marine ecosystems through the expansion and contraction of species’ ranges. Sea ice loss and warming temperatures are expected to expand habitat availability for macroalgae along long stretches of Arctic coastlines. To better understand the current distribution of kelp forests in the Eastern Canadian Arctic, kelps were sampled along the coasts for species identifications and percent cover. The sampling effort was supplemented with occurrence records from global biodiversity databases, searches in the literature, and museum records. Environmental information and occurrence records were used to develop ensemble models for predicting habitat suitability and a Random Forest model to predict kelp cover for the dominant kelp species in the region – Agarum clathratum, Alaria esculenta, and Laminariaceae species (Laminaria solidungula and Saccharina latissima). Ice thickness, sea temperature and salinity explained the highest percentage of kelp distribution. Both modeling approaches showed that the current extent of arctic kelps is potentially much greater than the available records suggest. These modeling approaches were projected into the future using predicted environmental data for 2050 and 2100 based on the most extreme emission scenario (RCP 8.5). The models agreed that predicted distribution of kelp in the Eastern Canadian Arctic is likely to expand to more northern locations under future emissions scenarios, with the exception of the endemic arctic kelp L. solidungula, which is more likely to lose a significant proportion of suitable habitat. However, there were differences among species regarding predicted cover for both current and future projections. Notwithstanding model-specific variation, it is evident that kelps are widespread throughout the area and likely contribute significantly to the functioning of current Arctic ecosystems. Our results emphasize the importance of kelp in Arctic ecosystems and the underestimation of their potential distribution there.
    Description: This work was supported by ArcticNet (P101 ArcticKelp), Fisheries and Oceans Canada Arctic Climate Change Adaptation Strategy, Arctic Science and Aquatic Invasive Species Monitoring and Research Funds, the Natural Sciences and Engineering Research Council (NSERC), NRCan Polar Continental Shelf Program Support, Canadian Aquatic Invasive Species Network (CAISN), the Nunavut Marine Region Wildlife Management Board (NWMB), Quebec-Ocean, and the Ocean Frontier Institute through an award from the Canada First Research Excellence Fund, the Marine Environmental Observation, Prediction and Response Network of Centres of Excellence’s (MEOPAR-NCE) Southampton Island Marine Ecosystem Project, and the Belmont Forum–BiodivERsA’s De-icing of Arctic Coasts: critical or new opportunities for marine biodiversity and Ecosystem Services (ACCES). KF-D was supported by the Australian Research Council (DE190100692).
    Keywords: Laminariales ; polar ; ensemble model ; species distribution model (SDM) ; climate change ; shallow subtidal benthic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...