GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 74 (1993), S. 2626-2632 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A theoretical investigation of the electron and phonon dynamics during intersubband transitions in undoped multiple GaAs-AlxGa1−xAs quantum well structures is presented within a rate equation formulation where particle and energy flow equations are derived from Boltzmann's equation using Fermi statistics. This work focuses upon the role played by quantized polar optical phonons known as slab modes and interface modes. Photoexcited carrier behavior is analyzed in relation with recent Raman measurements and shows time constants for electron relaxation in agreement with experimental data.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 73 (1993), S. 4669-4679 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A numerical model is presented for the electronic properties of a novel InxGa1−xAs/In1−yAlyAs multiple-quantum-well waveguide modulator and a theoretical analysis of electron and hole escape mechanisms from the quantum well is developed. The influence of carriers and dopant ion charges on the band structure is simulated with a self-consistent Poisson–Schrödinger solver. The different escape mechanisms for both electrons and holes are: direct tunneling, phonon-assisted sequential tunneling, and thermionic emission. At high forward biases, the electron escape time limits the device speed, while at high reverse biases, heavy holes take a longer time than electrons for escaping the quantum well. For both particles, phonon-assisted sequential tunneling is a key mechanism in determining the device speed operation. The calculated escape times are in good agreement with the experimental data.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 63 (1988), S. 540-546 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A new class of cascade high-efficiency photovoltaics designed for space-based applications is proposed. The design improves upper subcell performance and avoids electrical and optical losses associated with an intercell ohmic contact. Multijunction upper subcells reduce bulk recombination of photogenerated minority carriers by decreasing the average collection distance, yielding improved spectral response and radiation tolerance. A three-terminal design is employed which circumvents the need for a monolithic intercell contact and, thus, the losses associated with such a contact. Problems related to array interconnection of three-terminal devices may be solved by creating a two-terminal cell from complementary pairs (n-p-n and p-n-p) of three-terminal cells. Simulations of lattice-matched AlGaAs-GaAs and lattice-mismatched AlGaAs-InGaAs cascade cells show that one-sun AM0 efficiencies in excess of 26% and 28%, respectively, are possible.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...