GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2021-07-21
    Description: Elevated nutrient inputs challenge the health and functioning of aquatic ecosystems. To improve riverine water quality management, it is necessary to understand the underlying biogeochemical and physical processes, anthropogenic drivers and their interactions at catchment scale. We hypothesize that the spatial heterogeneity of nutrient sources dominantly controls the variability of in‐stream concentration dynamics among catchments. We investigated controls of mean nitrate (NO3−), phosphate (PO43−), and total organic carbon (TOC) concentrations and concentration‐discharge (C‐Q) relationships in 787 German catchments of a newly assembled data base, covering a wide range of physiographic and anthropogenic settings. We linked water quality metrics to catchment characteristics using partial least squares regressions and random forests. We found archetypal C‐Q patterns with enrichment dominating NO3− and TOC, and dilution dominating PO43− export. Both the mean NO3− concentrations and their variance among sites increased with agricultural land use. We argue that subsurface denitrification can buffer high nitrogen inputs and cause a decline in concentration with depth, resulting in chemodynamic, strongly positive C‐Q patterns. Mean PO43− concentrations were related to point sources, though the low predictive power suggests effects of unaccounted in‐stream processes. In contrast, high diffuse agricultural inputs explained observed positive PO43− C‐Q patterns. TOC levels were positively linked to the abundance of riparian wetlands, while hydrological descriptors were important for explaining TOC dynamics. Our study shows a strong modulation of anthropogenic inputs by natural controls for NO3− and PO43− concentrations and dynamics, while for TOC only natural controls dominate observed patterns across Germany.
    Description: Plain Language Summary: Phosphorus, nitrogen, and organic carbon are key elements of plants and all living organisms. Humans are altering the nutrient cycles especially, to improve agricultural productivity and through domestic and industrial wastewater. Excess nutrients in surface waters have harmed many aquatic ecosystems by causing toxic algal blooms and a loss of biodiversity. Low nutrient concentrations and habitat variability are similarly important to those ecosystems, but human interference with natural drivers is not yet fully understood. To better understand and disentangle natural or human controls, we investigated nutrient concentrations and their variability across German catchments with varying landscapes and anthropogenic conditions. The human impact is clearly visible for mean nitrate concentrations, while the (natural) subsurface properties mainly controlled the variability of riverine nitrate. In the past, phosphate inputs were usually linked to wastewater, yet we found the control of agricultural activities on concentration dynamics to be unexpectedly high. Organic carbon was mainly associated with natural sources related to riparian wetlands where interactions with other nutrients are possible. This understanding of dominant controls is important in order to adapt management strategies to ensure healthy aquatic ecosystems.
    Description: Key Points: Riverine NO3− dynamics are controlled by vertical concentration heterogeneity, which can result from subsurface denitrification Diffuse P sources exert a strong control on the spatial variability of PO43− export patterns in contrast to point sources Share of riparian wetlands controls the mean TOC concentrations in German catchments
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Umweltbundesamt (UBA) http://dx.doi.org/10.13039/501100010809
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Keywords: 551.483 ; catchments ; concentration‐discharge relationships ; controls ; nutrients ; water quality
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-05
    Description: Human alteration of nutrient cycles has caused persistent and widespread degradation of water quality around the globe. In many regions, including Western Europe, elevated nitrate (NO3−) concentration in surface waters contributes to eutrophication and noncompliance with environmental legislation. Discharge, NO3− concentrations and the vulnerability of the aquatic ecosystems to eutrophication often exhibit a distinct seasonality. Understanding spatial patterns and long‐term trends in this seasonality is crucial to improve water quality management. Here, we hypothesized that NO3− concentrations during high‐flow periods would respond faster to changes in nutrient inputs than low‐flow concentrations because of greater connectivity of shallow diffuse NO3− sources with the river network. To test this hypothesis, we compiled long‐term NO3− and discharge time series from 290 Western European catchments. To characterize the long‐term trajectories of seasonal NO3− concentration, we propose a novel hysteresis approach comparing low‐ and high‐flow NO3− concentration in the context of multi‐decadal N input changes. We found synchronous winter maxima of NO3− and discharge in 84% of the study catchments. However, contrary to our hypothesis, there were surprisingly diverse long‐term trajectories of seasonal NO3− concentration. Both clockwise (faster high‐flow NO3− response) and counterclockwise hysteresis (faster low‐flow NO3− response) occurred in similar proportions, potentially due to a high complexity in the underlying processes. Spatial variability of seasonality in NO3− concentration across the catchments was more pronounced and better predictable than its long‐term variability. This work demonstrates the value of seasonal and inter‐annual hydrochemical analysis and provides new tools for water quality monitoring and management.
    Description: Plain Language Summary: Nitrogen is an essential element of all living organisms and has thus often been used excessively as fertilizer to secure food production. However, surface waters can suffer from elevated nutrients inputs, causing toxic algal blooms and impairing drinking water quality, especially during summer low flows. To manage water quality, it is crucial to understand these seasonal variations of nitrogen and discharge and the underlying processes. We used data from 290 catchments in France and Germany to characterize average seasonality patterns and their long‐term evolution across the variety of landscapes and human influences. This allowed classifying catchment behavior and linking them to controls. As expected, both nitrogen and discharge peak during winter in most catchments (84%). However, there are well explainable deviations, for example, in mountainous regions. The long‐term evolution of seasonality was more diverse than expected suggesting a complex interplay of various processes with the long input history from fertilization and wastewater being part of the controls. We found that the differences among catchments were greater than the long‐term changes of seasonality within most catchments. By identifying catchment typologies, our study increases the understanding of nitrate seasonality patterns across a large extent and thus supports ecological water quality management.
    Description: Key Points: Spatial patterns of nitrate and discharge seasonality are linked to topography and hydroclimate with winter maxima dominating for both. After decreasing nutrient inputs, cases with decreases in river nitrate preceding during low‐ and high‐flow seasons occurred equally often. Spatial variability of nitrate seasonality is greater and more predictable from catchment characteristics than its long‐term variability.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: US National Science Foundation (NSF)
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-21
    Description: Modern digital scientific workflows - often implying Big Data challenges - require data infrastructures and innovative data science methods across disciplines and technologies. Diverse activities within and outside HGF deal with these challenges, on all levels. The series of Data Science Symposia fosters knowledge exchange and collaboration in the Earth and Environment research community. We invited contributions to the overarching topics of data management, data science and data infrastructures. The series of Data Science Symposia is a joint initiative by the three Helmholtz Centers HZG, AWI and GEOMAR Organization: Hela Mehrtens and Daniela Henkel (GEOMAR)
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...