GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Book
    Book
    Kidlington : Elsevier Science
    Keywords: Aufsatzsammlung
    Type of Medium: Book
    Pages: S. 451 - 802 , Ill., graph. Darst
    Series Statement: Deep sea research 53.2006,5/7
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Microbial ecology 7 (1981), S. 253-274 
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The internal colony-forming bacterial flora of the schistosome intermediate host snailBiomphalaria glabrata (Say) has been characterized in ca. 500 individual snails from Puerto Rico, Guadeloupe, and St. Lucia, and from laboratory aquaria. Freshly captured wild snails harbor 2–40×106 CFU·g−1, and healthy aquarium snails harbor 4–16×107 CFU·g−1, whereas moribund individuals have 4–10 times as many bacteria as healthy individuals from the same habitats.Pseudomonas spp. are the most common predominant bacteria in normal snails, whereasAcinetobacter, Aeromonas, andMoraxella spp. predominate in moribund snails. External bacterial populations in water appear to have little effect on the composition and size of the flora in any snail. In addition to normal (healthy) and moribund snails, a third group of snails has been distinguished on the basis of internal bacterial density and predominating genera. These “high-density” snails may have undergone stresses and may harbor opportunistic pathogens. The microfloras of wild and laboratory-reared snails can be altered and stimulated to increase in density by crowding the snails or treating them with antibiotics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We performed a series of seawater culture experiments on surface mixed layer samples during the spring phytoplankton bloom in the North Atlantic Ocean. Diluted (20% unfiltered + 80% 0.22 μm filtered) and untreated “whole” seawater samples were incubated up to 40 hour and sampled periodically for cell numbers, biovolume, and incorporation of 3H-thymidine and -leucine. Abundance and biovolume increased exponentially at similar rates in diluted and whole samples, suggesting that removal by bacteriovores was low compared with growth. The exponential increase in biovolume was due to increases in cell numbers and mean cell volume. Generation times (i.e., 0.693/μ) averaged 36–53 hour in these surface (10 m) samples. Ninety percent of the tritiated thymidine incorporation (TTI) into cold trichloroacetic acid-insoluble cell fractions was recovered after extraction with NaOH and phenolchloroform, indicating that catabolism of thymidine and its appearance in RNA or protein was very low. The percentage of thymidine recovered in DNA did not change over the 40 hour of incubation and was the same as in water column samples. Rates of thymidine and leucine incorporation also increased exponentially. Incorporation rates tended to increase more rapidly than cell numbers or biovolume, though the differences were not significantly different, due to the small number of samples and variability over the time courses. Differential rates of increase in cellular properties during growth might indicate a lack of coupling between incorporation and production over time scales of hours-days. This in turn may reflect unbalanced growth of bacterial assemblages, which is an adaptation to variable conditions in the upper ocean in this season. Nonequality of rate constants for cells and incorporation yields conversion factors that are either higher or lower than would be calculated from balanced growth (i.e., rates of increase in numbers and incorporation rates equal), depending on the calculation approach chosen. An alternative approach to calculating conversion factors (the modified derivative approach) is proposed, which is insensitive to differential rates of increase of abundance and incorporation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Microbial ecology 7 (1981), S. 281-282 
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-03
    Description: A seven-component upper ocean ecosystem model of nitrogen cycling calibrated with observations at Bermuda Station “S” has been coupled to a three-dimensional seasonal general circulation model (GCM) of the North Atlantic ocean. The aim of this project is to improve our understanding of the role of upper ocean biological processes in controlling surface chemical distributions, and to develop approaches for assimilating large data sets relevant to this problem. A comparison of model predicted chlorophyll with satellite coastal zone color scanner observations shows that the ecosystem model is capable of responding realistically to a variety of physical forcing environments. Most of the discrepancies identified are due to problems with the GCM model. The new production predicted by the model is equivalent to 2 to 2.8 mol m−2 yr−1 of carbon uptake, or 8 to 12 GtC/yr on a global scale. The southern half of the subtropical gyre is the only major region of the model with almost complete surface nitrate removal (nitrate〈0.1 mmol m−3). Despite this, almost the entire model is nitrate limited in the sense that any addition of nitrate supply would go predominantly into photosynthesis. The only exceptions are some coastal upwelling regions and the high latitudes during winter, where nitrate goes as high as ∼10 mmol m−3.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  In: The Changing Ocean Carbon Cycle: a midterm synthesis of the Joint Global Ocean Flux Study. , ed. by Hanson, R. B., Ducklow, H. W. and Field, J. G. Cambridge University Press, Cambridge, UK, pp. 375-391.
    Publication Date: 2020-03-26
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-06-22
    Description: Jellyfish blooms occur in many estuarine and coastal regions and may be increasing in their magnitude and extent worldwide. Voracious jellyfish predation impacts food webs by converting large quantities of carbon (C), fixed by primary producers and consumed by secondary producers, into gelatinous biomass, which restricts C transfer to higher trophic levels because jellyfish are not readily consumed by other predators. In addition, jellyfish release colloidal and dissolved organic matter (jelly-DOM), and could further influence the functioning of coastal systems by altering microbial nutrient and DOM pathways, yet the links between jellyfish and bacterioplankton metabolism and community structure are unknown. Here we report that jellyfish released substantial quantities of extremely labile C-rich DOM, relative to nitrogen (25.6 ± 31.6 C:1N), which was quickly metabolized by bacterioplankton at uptake rates two to six times that of bulk DOM pools. When jelly-DOM was consumed it was shunted toward bacterial respiration rather than production, significantly reducing bacterial growth efficiencies by 10% to 15%. Jelly-DOM also favored the rapid growth and dominance of specific bacterial phylogenetic groups (primarily γ-proteobacteria) that were rare in ambient waters, implying that jelly-DOM was channeled through a small component of the in situ microbial assemblage and thus induced large changes in community composition. Our findings suggest major shifts in microbial structure and function associated with jellyfish blooms, and a large detour of C toward bacterial CO2 production and away from higher trophic levels. These results further suggest fundamental transformations in the biogeochemical functioning and biological structure of food webs associated with jellyfish blooms.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-02-06
    Description: The microbial cosmopolitan dispersion hypothesis often invoked to explain distribution patterns driven by high connectivity of oceanographic water masses and widespread dispersal ability has never been rigorously tested. By using a global marine bacterial dataset and iterative matrix randomization simulation, we show that marine bacteria exhibit a significantly greater dispersal...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-10-11
    Description: The West Antarctic Peninsula (WAP) is a climatically-sensitive region where periods of strong warming have caused significant changes in marine ecosystem and food web processes. Tight coupling between phytoplankton and higher trophic levels implies that the coastal WAP is a bottom-up controlled system, where changes in phytoplankton dynamics may largely impact other food web components. Here, we analyzed the interdecadal time series of year-round chlorophyll-a (Chl) collected from three stations along the coastal WAP, Carlini Station at Potter Cove (PC) on King George Island, Palmer Station on Anvers Island, and Rothera Station on Adelaide Island. There were trends toward increased phytoplankton biomass at Carlini Station (PC) and Palmer Station, while phytoplankton biomass declined significantly at Rothera Station over the studied period. The impacts of two relevant climate modes to the WAP, the El Niño-Southern Oscillation and the Southern Annular Mode, on winter and spring phytoplankton biomass appear to be different among three sampling stations, suggesting a possibly more important role of local-scale forcing than large-scale forcing on phytoplankton dynamics at each station. The interannual variability of seasonal bloom progression derived from considering all three stations together captured ecologically meaningful, seasonally co-occurring bloom patterns which were primarily constrained by water-column stability strength. Our findings highlight a coupled link between phytoplankton and physical and climate dynamics along the coastal WAP, understanding of which is crucial in predicting overall WAP food web responses to climate change and variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...