GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 120 (2015): 363–378, doi:10.1002/2014JF003180.
    Description: Recent fire activity throughout Alaska has increased the need to understand postfire impacts on soils and permafrost vulnerability. Our study utilized data and modeling from a permafrost and ecosystem gradient to develop a mechanistic understanding of the short- and long-term impacts of tundra and boreal forest fires on soil thermal dynamics. Fires influenced a variety of factors that altered the surface energy budget, soil moisture, and the organic-layer thickness with the overall effect of increasing soil temperatures and thaw depth. The postfire thickness of the soil organic layer and its impact on soil thermal conductivity was the most important factor determining postfire soil temperatures and thaw depth. Boreal and tundra ecosystems underlain by permafrost experienced smaller postfire soil temperature increases than the nonpermafrost boreal forest from the direct and indirect effects of permafrost on drainage, soil moisture, and vegetation flammability. Permafrost decreased the loss of the insulating soil organic layer, decreased soil drying, increased surface water pooling, and created a significant heat sink to buffer postfire soil temperature and thaw depth changes. Ecosystem factors also played a role in determining postfire thaw depth with boreal forests taking several decades longer to recover their soil thermal properties than tundra. These factors resulted in tundra being less sensitive to postfire soil thermal changes than the nonpermafrost boreal forest. These results suggest that permafrost and soil organic carbon will be more vulnerable to fire as climate warms.
    Description: We are pleased to acknowledge funding from the US National Science Foundation, grants DEB-1026843 and EF-1065587, to the Marine Biological Laboratory. Additional logistical support was provided by Toolik Field Station and CH2MHill, funded by NSF's Office of Polar Programs.
    Description: 2015-08-24
    Keywords: Soil thermal dynamics ; Fire disturbance ; Thermal conductivity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clevenger, S. J., Benitez-Nelson, C. R., Drysdale, J., Pike, S., Puigcorbe, V., & Buesseler, K. O. Review of the analysis of Th-234 in small volume (2-4 L) seawater samples: improvements and recommendations. Journal of Radioanalytical and Nuclear Chemistry, 329(1), (2021): 1–13, https://doi.org/10.1007/s10967-021-07772-2.
    Description: The short-lived radionuclide 234Th is widely used to study particle scavenging and transport from the upper ocean to deeper waters. This manuscript optimizes, reviews and validates the collection, processing and analyses of total 234Th in seawater and suggests areas of further improvements. The standard 234Th protocol method consists of scavenging 234Th from seawater via a MnO2 precipitate, beta counting, and using chemical recoveries determined by adding 230Th. The revised protocol decreases sample volumes to 2 L, shortens wait times between steps, and simplifies the chemical recovery process, expanding the ability to more rapidly and safely apply the 234Th method.
    Description: The authors would like to acknowledge support from the National Aeronautics and Space Administration (NASA) as part of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) program awards 80NSSC17K0555; and the Woods Hole Oceanographic Institution’s Ocean Twilight Zone study for KOB and SJC.
    Keywords: Thorium-234 analysis ; 234Th particle flux ; Biological carbon pump ; Particle scavenging
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Buesseler, K. O., Benitez-Nelson, C. R., Roca-Marti, M., Wyatt, A. M., Resplandy, L., Clevenger, S. J., Drysdale, J. A., Estapa, M. L., Pike, S., & Umhau, B. P. High-resolution spatial and temporal measurements of particulate organic carbon flux using thorium-234 in the northeast Pacific Ocean during the EXport processes in the ocean from RemoTe sensing field campaign. Elementa: Science of the Anthropocene, 8(1), (2020): 030, https://doi.org/10.1525/elementa.030.
    Description: The EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) program of National Aeronautics and Space Administration focuses on linking remotely sensed properties from satellites to the mechanisms that control the transfer of carbon from surface waters to depth. Here, the naturally occurring radionuclide thorium-234 was used as a tracer of sinking particle flux. More than 950 234Th measurements were made during August–September 2018 at Ocean Station Papa in the northeast Pacific Ocean. High-resolution vertical sampling enabled observations of the spatial and temporal evolution of particle flux in Lagrangian fashion. Thorium-234 profiles were remarkably consistent, with steady-state (SS) 234Th fluxes reaching 1,450 ± 300 dpm m−2 d−1 at 100 m. Nonetheless, 234Th increased by 6%–10% in the upper 60 m during the cruise, leading to consideration of a non-steady-state (NSS) model and/or horizontal transport, with NSS having the largest impact by decreasing SS 234Th fluxes by 30%. Below 100 m, NSS and SS models overlapped. Particulate organic carbon (POC)/234Th ratios decreased with depth in small (1–5 μm) and mid-sized (5–51 μm) particles, while large particle (〉51 μm) ratios remained relatively constant, likely influenced by swimmer contamination. Using an average SS and NSS 234Th flux and the POC/234Th ratio of mid-sized particles, we determined a best estimate of POC flux. Maximum POC flux was 5.5 ± 1.7 mmol C m−2 d−1 at 50 m, decreasing by 70% at the base of the primary production zone (117 m). These results support earlier studies that this site is characterized by a modest biological carbon pump, with an export efficiency of 13% ± 5% (POC flux/net primary production at 120 m) and 39% flux attenuation in the subsequent 100 m (POC flux 220 m/POC flux 120m). This work sets the foundation for understanding controls on the biological carbon pump during this EXPORTS campaign.
    Description: The authors would like to acknowledge support from the National Aeronautics and Space Administration (NASA) as part of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) program awards 80NSSC17K0555 and 80NSSC17K0662; the Woods Hole Oceanographic Institution’s Ocean Twilight Zone study for KOB and MRM, and the National Science Foundation Graduate Research Fellowship Program (NSF-GRFP) for funding and support of AW.
    Keywords: Thorium-234 ; Ocean Station Papa ; Particulate organic carbon flux ; EXPORTS ; Biological carbon pump
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...