GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-04-20
    Description: Lake Baikal is inhabited by more than 300 endemic amphipod species, which are narrowly adapted to certain thermal niches due to the high interspecific competition. In contrast, the surrounding freshwater fauna is commonly represented by species with large-scale distribution and high phenotypic thermal plasticity. Here, we investigated the thermal plasticity of the energy metabolism in two closely-related endemic amphipod species from Lake Baikal (Eulimnogammarus verrucosus; stenothermal and Eulimnogammarus cyaneus; eurythermal) and the ubiquitous Holarctic amphipod Gammarus lacustris (eurythermal) by exposure to a summer warming scenario (6-23.6 °C; 0.8 °C d-1). In concert with routine metabolic rates, activities of key metabolic enzymes increased strongly with temperature up to 15 °C in E. verrucosus, whereupon they leveled off (except for lactate dehydrogenase). In contrast, exponential increases were seen in E. cyaneus and G. lacustris throughout the thermal trial (Q10-values: 1.6-3.7). Cytochrome-c-oxidase, lactate dehydrogenase, and 3-hydroxyacyl-CoA dehydrogenase activities were found to be higher in G. lacustris than in E. cyaneus, especially at the highest experimental temperature (23.6 °C). Decreasing gene expression levels revealed some thermal compensation in E. cyaneus but not in G. lacustris. In all species, shifts in enzyme activities favored glycolytic energy generation in the warmth. The congruent temperature-dependencies of enzyme activities and routine metabolism in E. verrucosus indicate a strong feedback-regulation of enzymatic activities by whole organism responses. The species-specific thermal reaction norms reflect the different ecological niches, including the spatial distribution, distinct thermal behavior such as temperature-dependent migration, movement activity, and mating season.
    Keywords: 3-hydroxyacyl-CoA dehydrogenase (HADH); Amphipoda; Bolshie_Koty; citrate synthase (CS); cytochrome-c-oxidase (COX); glutamate dehydrogenase (GDH); HAND; lactate dehydrogenase (LDH); Lake-14; Lake Baikal; metabolic fuel use; pyruvate kinase (PK); Sampling by hand; Temperature; thermal adaption
    Type: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 34.7 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-08
    Description: Lake Baikal is inhabited by more than 300 endemic amphipod species, which are narrowly adapted to certain thermal niches due to the high interspecific competition. In contrast, the surrounding freshwater fauna is commonly represented by species with large‐scale distribution and high phenotypic thermal plasticity. Here, we investigated the thermal plasticity of the energy metabolism in two closely‐related endemic amphipod species from Lake Baikal (Eulimnogammarus verrucosus; stenothermal and Eulimnogammarus cyaneus; eurythermal) and the ubiquitous Holarctic amphipod Gammarus lacustris (eurythermal) by exposure to a summer warming scenario (6–23.6 °C; 0.8 °C d−1). In concert with routine metabolic rates, activities of key metabolic enzymes increased strongly with temperature up to 15 °C in E. verrucosus, whereupon they leveled off (except for lactate dehydrogenase). In contrast, exponential increases were seen in E. cyaneus and G. lacustris throughout the thermal trial (Q10‐values: 1.6–3.7). Cytochrome‐c‐oxidase, lactate dehydrogenase, and 3‐hydroxyacyl‐CoA dehydrogenase activities were found to be higher in G. lacustris than in E. cyaneus, especially at the highest experimental temperature (23.6 °C). Decreasing gene expression levels revealed some thermal compensation in E. cyaneus but not in G. lacustris. In all species, shifts in enzyme activities favored glycolytic energy generation in the warmth. The congruent temperature‐ dependencies of enzyme activities and routine metabolism in E. verrucosus indicate a strong feedback‐ regulation of enzymatic activities by whole organism responses. The species‐specific thermal reaction norms reflect the different ecological niches, including the spatial distribution, distinct thermal behavior such as temperature‐dependent migration, movement activity, and mating season.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-29
    Description: Polyaromatic hydrocarbons (PAH) are common pollutants of water ecosystems originating from incineration processes and contamination with mineral oil. Water solubility of PAHs is generally low; for toxicity tests with aquatic organisms, they are therefore usually dissolved in organic solvents. Here we examined the effects of a typical model PAH, phenanthrene, and a solvent, acetone, on amphipods as relevant aquatic invertebrate models. Two of these species, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, are common endemics of the oligotrophic and pristine Lake Baikal, while one, Gammarus lacustris, is widespread throughout the Holarctic and inhabits smaller and more eutrophic water bodies in the Baikal area. Neither solvent nor phenanthrene caused mortality at the applied concentrations, but both substances affected gene expression in all species. Differential gene expression was more profound in the species from Lake Baikal than in the Holarctic species. Moreover, in one of the Baikal species, E. cyaneus, we found that many known components of the cellular xenobiotic detoxification system reacted to the treatments. Finally, we detected a negative relationship between changes in transcript abundances in response to the solvent and phenanthrene. This mixture effect, weaker than the impact by a single mixture component, needs further exploration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-10
    Description: Lake Baikal is one of the oldest freshwater lakes and has constituted a stable environment for millions of years, in stark contrast to small, transient bodies of water in its immediate vicinity. A highly diverse endemic endemic amphipod fauna is found in one, but not the other habitat. We ask here whether differences in stress response can explain the immiscibility barrier between Lake Baikal and non-Baikal faunas. To this end, we conducted exposure experiments to increased temperature and the toxic heavy metal cadmium as stressors. Here we obtained high-quality de novo transcriptome assemblies, covering mutiple conditions, of three amphipod species, and compared their transcriptomic stress responses. Two of these species, Eulimnogammarus verrucosus and E. cyaneus, are endemic to Lake Baikal, while the Holarctic Gammarus lacustris is a potential invader. Both Baikal species possess intact stress response systems and respond to elevated temperature with relatively similar changes in their expression profiles. G. lacustris reacts less strongly to the same stressors, possibly because its transcriptome is already perturbed by acclimation conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-10
    Description: Species of littoral freshwater environments in regions with continental climate experience pronounced seasonal temperature changes. Coping with long cold winters and hot summers requires specific physiological and behavioural adaptations. Endemic amphipods of Lake Baikal, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, show high metabolic activity throughout the year; E. verrucosus even reproduces in winter. In contrast, the widespread Holarctic amphipod Gammarus lacustris overwinters in torpor. This study investigated the transcriptomic hallmarks of E. verrucosus, E. cyaneus and G. lacustris exposed to low water temperatures. Amphipods were exposed to 1.5°C and 12°C (corresponding to the mean winter and summer water temperatures, respectively, in the Baikal littoral) for one month. At 1.5°C, G. lacustris showed upregulation of ribosome biogenesis and mRNA processing genes, as well as downregulation of genes related to growth, reproduction and locomotor activity, indicating enhanced energy allocation to somatic maintenance. Our results suggest that the mitogen‑activated protein kinase (MAPK) signalling pathway is involved in the preparation for hibernation; downregulation of the actin cytoskeleton pathway genes could relate to the observed low locomotor activity of G. lacustris at 1.5°C. The differences between the transcriptomes of E. verrucosus and E. cyaneus from the 1.5°C and 12°C exposures were considerably smaller than for G. lacustris. In E. verrucosus, cold-exposure triggered reproductive activity was indicated by upregulation of respective genes, whereas in E. cyaneus, genes related to mitochondria functioning were upregulated, indicating cold compensation in this species. Our data elucidate the molecular characteristics behind the different adaptations of amphipod species from the Lake Baikal area to winter conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...