GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Terra nova 4 (1992), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: It is useful to differentiate between thrust belts that are related to east(E)-dipping or west(W)-dipping subduction. More precisely, these either follow or resist the overall ‘eastward’ mantle flow detected by the hot-spot reference frame. Because of the overall ‘westward’ drift of the lithosphere we find in E-dipping subduction that the basal decollement underlying the eastern plate reaches the surface and involves deep crustal rocks. With W-dipping subduction, however, we find that the basal decollement of the eastern plate is warped as well as subducted. Consequently thrust belts related to E- (or NE-) dipping subduction show conspicuous structural and morphologic relief, involve deep crustal rocks, and are associated with shallow foredeeps. On the other hand, thrust belts related to W- (or SW-) dipping subduction show relatively low structural and morphological relief, involve only shallow upper crustal rocks and are associated with deep foredeeps as well as back-arc extension. The accretionary wedge-foredeep-back-arc basin association is visualized as an overall eastward propagating tectonic wave. The accretionary wedge forms in the frontal parts and generally below sea-level. This is followed by forward migrating extension that cuts the earlier accretionary wedge. Typically such a system occurs in the context of overall W-dipping subduction and is characterized by an arcuate shape (e.g. Carpathians, Apennines, Barbados, etc.). Along the branches of the arc external transpression and internal transtension co-exist but with different sense (i.e. sinistral transpression contrasting with dextral transtension).We also observe that with W-dipping subduction the tangent to a pre- deformation marker is descending into the foredeep at an angle in the range of 1–10° while with E-(or NE-)dipping subduction the same marker would rise towards the hinterland with typical angles of about 5–10°.Foredeep subsidence is mainly controlled by the load of the thrust sheets in thrust belts due to E-(or NE-)dipping subduction and by the roll-back of the subduction hinge in accretionary wedges due to W-dipping subduction. Subsidence or uplift rates in the foredeeps and accretionary wedges related to the two different types of subduction are very different, providing different P-T-t paths in the two geodynamic realms. The present shape and structure of the thrust belts belonging to one of these two general types may help us in reconstructing the location of thinned lithosphere and basin evolution in the past.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Terra nova 9 (1997), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The western Mediterranean late Oligocene–Miocene basins (Alboran, Valencia and Provençal basins) are a coherent system of interrelated troughs. In all basins normal faults and thermal subsidence migrated toward the east progressively moving to the Miocene-to-Pleistocene Algerian and Tyrrhenian basins. All those troughs appear elements of the back-arc opening related to the eastward roll-back of the W-directed Apennines–Maghrebides subduction zone, similarly to western Pacific back-arc settings.These late Oligocene–early Miocene basins nucleated both within the Betic cordillera (e.g. Alboran sea) and in its foreland (Valencia and Provençal troughs). The N40–70° direction of grabens is oblique to the coexisting N60–80°-trending orogen and shows its structural independence from the orogenic roots. Thus, as the extension cross-cuts the orogen and developed also well outside the thrust belt front, the westernmost basins of the Mediterranean had to develop independently from the Alps-Betics orogen. Therefore, the Alboran extension, considered a classic example of a basin generated by the collapse of an orogen, cannot be ascribed to the detachment or annihilation of the lithospheric root. In contrast with the eastward migrating extensional basins, the Betic-Balearic thrust front was migrating westward producing interference or inversion structures.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Terra nova 15 (2003), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Orogens and rift zones have a finite number of regional faults. The accretionary prisms analysed here have a number of thrusts 〈 50, whereas extensional areas have a number of normal faults ranging between six and 44. The average spacing of thrusts is between 5 and 25 km; spacing of normal faults is more restricted into two peaks, at 25–29 km and 4–6 km, in which the latter is the most common. The number and spacing of faults appear to be mainly controlled by the depth of the decollement plane, which seems to be more variable in compressive settings with respect to rift zones. Basement-involved orogens present fewer and more spaced thrusts; by contrast, a greater number of thrusts with shorter spacing characterize thin-skinned thrust belts. The shallower the decollement is, the stronger it appears to control the palaeogeography, in the sense of rheological lateral variations in the sedimentary cover.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 76 (1987), S. 735-754 
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Abstract According to structural and stratigraphic data, eoalpine and mesoalpine tectonics can be clearly recognized in the Southern Alps and distinguished from the better known neoalpine deformation. The eoalpine phase (Late Cretaceous) was generated by N-S compression. It deformed basically the central-western Southern Alps producing overthrusts to the west and flower structures by sinistral transpression in the Giudicarie Belt. Deposition of the coeval flysch successions was controlled by the trend of this belt. This tectonic pattern persisted until Middle Eocene. The mesoalpine phase (Eocene) was generated mainly by a ENE-WSW compression and produced thrust geometries with N-S or NW-SE direction in the eastern part of the Southern Alps. The coeval Eocene Flysch also followed this trend, filling the foredeep basin. This deformation is considered to be the front of the Dinarids, which began to be deformed since Late Cretaceous until at least Early Oligocene. The neoalpine tectonics inherited the eoalpine and mesoalpine structures and produced the major part of the deformation accounting for the present structural framework of the Southern Alps.
    Abstract: Résumé Dans les Alpes Méridionales, des données stratigraphiques et structurales permettent de reconnaître les tectoniques éoalpine et mésoalpine et de les distinguer des déformations néoalpines, mieux connues. La phase éoalpine (Crétacé supérieur) a été engendrée par une compression N-S. Celle-ci a affecté surtout la partie centre-occidentale des Alpes Méridionales en produisant des charriages à l'ouest et des structures de décrochement sénestres dans la chaîne des Giudicarie, dont l'orientation a déterminé la sédimentation du flysch concommittant. Cette tectonique s'est poursuivie jusqu' à l'Eocène. La phase mésoalpine a été engendrée surtout par une compression ENE-WSW; elle a produit, dans la partie est des Alpes Méridionales, des charriages de direction N-S à NW-SE. Le flysch éocène a suivi cet alignement structural, en remplissant le bassin de l'avant-fosse. Cette déformation est considérée comme le front des Dinarides, dont la formation a commencé dés le Crétacé supérieur. La tectonique néoalpine a hérité des structures éoalpines et mésoalpines et est responsable de la plus grande part de la structure actuelle des Alpes Méridionales.
    Notes: Zusammenfassung Die eo- und mesoalpidische Tektonik in den Südalpen ist strukturell und stratigraphisch erkennbar und von den bekannteren neoalpidischen Bewegungsbildern deutlich zu unterscheiden. Die eoalpidische Phase (Obere Kreide) entspricht einer N-S Kompression, die sich in den zentralen bis westlichen Südalpen bemerkbar macht. Im westlichen Bereich treten Überschiebungen auf, das Judikarische Gebiet wird hingegen durch die von linkslateralen Transpressionen bewirkten Verwerfungsbündel gekennzeichnet, die auch die altersgleichen Flysch-Ablagerungen kontrollieren. Diese tektonische Phase ist bis zum Eozän aktiv. Die mesoalpidische Phase (Eozän) ist auf eine ENE-WSW Kompression zurückzuführen. Sie verursachte in den östlichen Südalpen N-S bis NW-SE gerichtete Überschiebungsbilder. In gleichorientierten vorozeanischen Becken kommt der eozäne Flysch vor. Dieses Deformationsbild kennzeichnet schon in der Oberen Kreide die Dinariden-Front. Die neoalpidische Tektonik vererbte die eo-mesoalpidischen Gefüge-Elemente und verursachte im wesentlichen den gegenwärtig erkennbaren Gefügeplan der Südalpen.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 345 (1990), S. 708-710 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-01-17
    Description: Although as Editors of Terra Nova we receive many well‐written papers, occasionally some submissions are not as good as they could be in all aspects. Therefore, we have put together this guide on what we consider to be a well‐written article for our journal. It may be particularly useful for younger and less experienced authors but even those who have written many papers may find some parts of this to be useful. However, please note that this is not a prescription for writing a paper acceptable to Terra Nova. If in your writing you have other ways of achieving the same objectives described below, we shall go on welcoming the diverse range of submissions to Terra Nova.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-06-24
    Description: The Messina Strait, that separates peninsular Italy from Sicily, is one of the most seismically active areas of the Mediterranean. The structure and seismotectonic setting of the region are poorly understood, although the area is highly populated and important infrastructures are planned there. New seismic reflection data have identified a number of faults, as well as a crustal scale NE-trending anticline few km north of the strait. These features are interpreted as due to active right-lateral transpression along the north-eastern Sicilian offshore, coexisting with extensional and right-lateral transtensional tectonics in the southern Messina Strait. This complex tectonic network appears to be controlled by independent and overlapping tectonic settings, due to the presence of a diffuse transfer zone between the SE-ward retreating Calabria subduction zone relative to slab advance in the western Sicilian side.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-11
    Description: Aims Shelf life of diagnostic antibodies is presumably longer than the expiration date on the label. Methods and Results Four independent laboratories tested a small number of diagnostic antibodies kept at +4C° for 12-26 years and found them perfectly working on routine histology sections. Conclusions Diagnostic antibodies may have a workable half-life in excess of ten years and emphasis on performance should shift to the preservation of antigenic targets in the tissue. This article is protected by copyright. All rights reserved.
    Print ISSN: 0309-0167
    Electronic ISSN: 1365-2559
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-04
    Description: Chemical and physical responses of groundwater to seismicity have been documented for thousands of years. Among the waves produced by earthquakes, Rayleigh waves can spread to great distances and produce hydrogeological perturbations in response to their passage. In this work, the groundwater level, which was continuously recorded in a monitoring well in Central Italy between July 2014 and December 2019, exhibited evident responses to dynamic crustal stress. In detail, 18 sharp variations of the groundwater level due to worldwide Mw ≥ 6.5 earthquakes were observed. Apart from earthquakes that occurred in Papua New Guinea and those with a hypocentral depth 〉 150 km, all far away Mw ≥ 7.6 earthquakes produced impulsive oscillations of groundwater. As the earthquake magnitude decreased, only some earthquakes with 6.5 ≤ Mw 〈 7.6 caused groundwater level perturbations, depending on the data acquisition frequency and epicentral distance from the monitoring well. A clear correlation between earthquake distance and magnitude in hydrogeological responses was found. Our results shed light on the hydrosensitivity of the study site and on the characteristics of fractured aquifer systems. Detecting the water table variations induced by distant earthquakes is another step towards a correct identification of (preseismic) hydrogeological changes due to near-field seismicity.
    Description: Published
    Description: 17850
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-02
    Description: Mapping the static gravity field in the Italian area is fundamental to identify the main lithospheric structures, to delineate the main geological elements at regional level and to infer the regional geodynamic setting. The ongoing tectonic processes highlight nevertheless the need to measure and model the time-variable gravity field, namely the dynamic gravity field, which requires increased accuracy and long time series of observations to separate the secular from the short-term variable components. The first, with a minor impact in Italy, are due to variations of ice mass balance (the viscoelastic response of the Earth to past changes in ice mass loading, and the elastic response of the Earth to present-day deglaciation), and the sealevel rise; the second are due to space/time variations of underground mass distributions, such as those related to seismic deformations, volcanic dynamics/eruptions and water transfer. Local-scale gravity studies along seismogenic faults may provide useful hints to study the seismic cycle and to unravel those areas more prone to seismic release by studying if the crustal volume is undergoing dilatancy (gravity decrease) or overpressure (gravity increase) before earthquake occurrence. This process, however, is accompanied by possible fluid migration, which can be revealed by other geophysical measurements, for example, by magnetotelluric and geoelectrical surveys. In this short paper, we briefly summarize the main sources of gravity variation providing on the same time orders of magnitude, spatial and temporal scales of their effects.
    Description: Published
    Description: 549-558
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Italian area ; Geodynamics ; Static gravity field ; Deformations ; Dynamic gravity field
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...