GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-07
    Description: Volcanic emissions are a critical pathway in Earth's carbon cycle. Here, we show that aerial measurements of volcanic gases using unoccupied aerial systems (UAS) transform our ability to measure and monitor plumes remotely and to constrain global volatile fluxes from volcanoes. Combining multi-scale measurements from ground-based remote sensing, long-range aerial sampling, and satellites, we present comprehensive gas fluxes-3760 ± [600, 310] tons day-1 CO2 and 5150 ± [730, 340] tons day-1 SO2-for a strong yet previously uncharacterized volcanic emitter: Manam, Papua New Guinea. The CO2/ST ratio of 1.07 ± 0.06 suggests a modest slab sediment contribution to the sub-arc mantle. We find that aerial strategies reduce uncertainties associated with ground-based remote sensing of SO2 flux and enable near-real-time measurements of plume chemistry and carbon isotope composition. Our data emphasize the need to account for time averaging of temporal variability in volcanic gas emissions in global flux estimates.
    Description: This research was enabled through the Alfred P. Sloan Foundation's support of the Deep Carbon Observatory Deep Earth Carbon Degassing program (DECADE). Part funding also came from the EPSRC CASCADE programme grant (EP/R009953/1). EJL was supported by a Leverhulme Trust Early Career Fellowship. KW was supported by the National Center for Nuclear Robotics (NCNR) EPSRC grant (EP/R02572X/1).
    Description: Published
    Description: eabb9103
    Description: 7TM.Sviluppo e Trasferimento Tecnologico
    Description: JCR Journal
    Keywords: UAS ; volcanic plume ; carbon cycle ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-10-11
    Description: Gas measurements using unmanned aerial vehicles, or drones, were undertaken at Turrialba volcano, Costa Rica, and Masaya volcano, Nicaragua, in 2016 and 2017. These two volcanoes are the largest time‐integrated sources of gas in the Central American Volcanic Arc, and both systems are currently extremely active with potential for sudden destabilization. We employed a series of miniaturized drone‐mounted instrumentation including a mini‐DOAS, two MultiGAS instruments, and an optical particle counter, supplemented by ground‐based measurements. Payloads were typically 1–1.5 kg and flight times were 10–15 min. The measurements were both accurate and precise due to the inherent sensitivity of the instrumentation and the high gas concentrations, which the drones were able to sample. The quality of data obtained by our drones was comparable to that obtained by our ground‐based measurements. At Turrialba in April 2017, we measured an average SO2 flux of 1,380 ± 280 T/day, CO2/SO2 of 6.5, and H2O/SO2 of 27.8. Using these values, we calculated a CO2 flux of 6,170 T/day and an H2O flux of 10,790 T/day. At Masaya in May 2017, the average SO2 flux was 1,560 ± 180 T/day, with CO2/SO2 of 3.9 and H2O/SO2 of 62.3, giving a mean CO2 flux of 4,150 T/day and mean H2O flux of 27,330 T/day. The elevated carbon and water fluxes and ratios are indicative of underlying magmas that are enriched in these components, resulting in the high levels of activity observed.
    Description: Published
    Description: 6501-6520
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-17
    Description: The measurement of volcanic gases, such as CO2 and SO2, emitted from summit craters and fumaroles is crucial to monitor volcanic activity, providing estimations of gases fluxes, and geochemical information that helps to assess the status and the risk level of an active volcano. During high degassing events, the measurement of volcanic emissions is a dangerous task that cannot be performed using hand portable or backpack carried gas analysis systems. Measurements of gases plumes could be safety achieved by using instruments mounted on UAS (Unmanned Aerial System). In this work, we present the measurements of CO2, SO2, and H2S gases collected with a miniaturized MultiGAS instrument during 2021 and 2022 field campaigns. They took place at several thermally active areas in Italy: Pisciarelli (Naples, Italy), Stromboli volcano (Messina, Italy), and Parco Naturalistico delle Biancane (Grosseto, Italy).
    Description: Published
    Description: 2390
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...