GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Hochschulschrift ; Subduktion ; Konvergente Plattengrenze ; Borisotop ; TIMS
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource ( 157Seiten = 13MB) , Ill., graph. Darst
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-30
    Description: The Caucasian orogenic wedge formed as a consequence of the closure of the Tethyan Ocean, and numerous fields of active mud volcanoes pepper the area adjacent to the Black and Caspian Seas. Stable isotope ratios of boron, helium, and carbon have been measured for gas, fluid and sediment samples from active mud volcanoes of Taman Peninsula and Georgia to estimate the sources and mobilization depths of the fluid phase and mud. Boron concentrations in mud volcano fluids were found to be 5–35× higher than seawater. Fluid isotope ratios vary between δ11B=22 and 39‰, while isotope ratios of the smectite- and illite-rich extruded mud are considerably depleted in heavy 11B (δ11B=−8 to +7‰). B contents of these muds are ~8× higher than modern marine sediments. This suggests that liquefaction prior to mud volcanism was accompanied by both B enrichment and isotope fractionation, most likely at an intermediate depth mud reservoir at 2–4 km. The hydrocarbon-generating source beds to the mud volcanoes are located at 7 to 〉10 km depth in the folded Maikop Formation and are of proposed Oligocene–Miocene age. The most likely mechanism is re-hydration of these shales by both hydrocarbons and a geochemically mature fluid from greater depth within the orogenic wedge. Such a deep fluid source is supported by our results from gas analyses, which imply an admixture of minor amounts (less than 1%vol) of 3He (Georgia), thermogenic 13C in methane as well as "ultraheavy" 13C in CO2 (both Taman and Georgia). The overall results attest active local flow of geochemically different fluids along deep-seated faults penetrating the two study areas in the Caucasian orogenic wedge, with the waters as well as the gases coming from below the Maikop Formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 187 (1-2). pp. 191-205.
    Publication Date: 2016-11-15
    Description: Boron contents and boron, carbon and oxygen stable isotopes were determined for authigenic carbonates recovered from Ocean Drilling Program Leg 146, Oregon margin. Carbonate precipitates are the most widespread authigenic phase in the shallow accretionary wedge and carry chemical information about long-term variations in pore fluid origin and flow paths in the Cascadia subduction zone. Drilling the first ridge (toe area including the frontal thrust) and the second ridge (or Hydrate Ridge) of the prism demonstrated different fluid regimes, with higher B contents in the authigenic precipitates at the toe. The δ11B of 18 authigenic precipitates analysed ranges from 13.9‰ to as high as 39.8‰, extending the upper range of previously reported carbonate δ11B values considerably. When related to the δ11B ratio of their parent solutions, these data are characteristic of fluid-related processes in accretionary prisms. Together with δ13C and δ18O, δ11B ratios of the carbonate concretions, nodules and crusts allow one to distinguish between precipitation influenced by (i) seawater, (ii) fluid reservoirs at different depth levels within the accretionary prism and (iii) cage water from dissociated gas hydrates, the latter possibly indicating a fluctuation of the bottom simulating reflector during most recent Earth’s history. From this first systematic boron study on authigenic precipitates from an accretionary prism it is suggested that B contents of such carbonate crusts and concretions exceed those reported for other marine carbonates. Given the abundance of such precipitates at convergent margins, they represent a significant B sink in geochemical cycling. Isotopic compositions of the parent fluids to the carbonates mirror B chemistry of modern pore waters from convergent margins. The precipitates carry information of different subduction-related fluid processes over a certain period of time, and hence are a crucial tracer in the investigation of palaeo-fluid flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...