GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Inst. and Methods in Physics Research, B 54 (1991), S. 424-428 
    ISSN: 0168-583X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Inst. and Methods in Physics Research, B 50 (1990), S. 338-342 
    ISSN: 0168-583X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-09
    Description: We find that geodetic strain rate (SR) integrated with the knowledge of active faults points out that hazardous seismic areas are those with lower SR, where active faults are possibly approaching the end of seismic cycle. SR values estimated from GPS velocities at epicentral areas of large historical earthquakes in Italy decrease with increasing elapsed time, thus highlighting faults more prone to reactivation. We have modelled an exponential decrease relationship between SR and the time elapsed since the last largest earthquake, differencing historical earthquakes according to their fault rupture style. Then, we have estimated the characteristic times of relaxation by a non-linear inversion, showing that events with thrust mechanism exhibit a characteristic time (~ 990 yr) about three times larger than those with normal mechanism. Assuming standard rigidity and viscosity values we can infer an average recurrence time of about 600 yr for normal faults and about 2000 yr for thrust faults.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: We describe the main structure and outcomes of the new probabilistic seismic hazard model for Italy, MPS19 [Modello di Pericolosità Sismica, 2019]. Besides to outline the probabilistic framework adopted, the multitude of new data that have been made available after the preparation of the previous MPS04, and the set of earthquake rate and ground motion models used, we give particular emphasis to the main novelties of the modeling and the MPS19 outcomes. Specifically, we (i) introduce a novel approach to estimate and to visualize the epistemic uncertainty over the whole country; (ii) assign weights to each model components (earthquake rate and ground motion models) according to a quantitative testing phase and structured experts’ elicitation sessions; (iii) test (retrospectively) the MPS19 outcomes with the horizontal peak ground acceleration observed in the last decades, and the macroseismic intensities of the last centuries; (iv) introduce a pioneering approach to build MPS19_cluster, which accounts for the effect of earthquakes that have been removed by declustering. Finally, to make the interpretation of MPS19 outcomes easier for a wide range of possible stakeholders, we represent the final result also in terms of probability to exceed 0.15 g in 50 years.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-12-11
    Description: The INGV RING research infrastructure is based on a permanent GNSS network developed to measure deformation at different spatial and temporal scales in the Mediterranean region. The network (http://ring.gm.ingv.it/) consists of ~250 real-time transmitting remote sites, using standard RTCM format, towards the Irpinia acquisition centres (Southern Italy). Data streaming is managed by a Ntrip Caster (https://igs.bkg.bund.de/ntrip/bkgcaster), whose sourcetable is synchronized with the RING database, thus guaranteeing reliable metadata for the analysis. Within the EWRICA project, the real-time data analysis is performed by using the RTPPP software (Ge et al.,2012) that provides different Precise Point Positioning products with increasing accuracies (standard PPP, PPP-AR and PPP-RA). On 24-h data, the ambiguity resolution (PPP-AR) and the regional augmentation (PPP-RA) allows accuracies of ~1 cm and ~3 cm for the horizontal and vertical components, respectively, at the best sites. Using shorter sliding windows (i.e. 60 s or 120 s, thus simulating a real-time situation), the accuracies are ~0,5 cm and ~1 cm for horizontal and vertical components, respectively. We also tested a homemade algorithm able to detect co-seismic static offsets in real-time in a simulated real-time strategy. The first results make the RING real-time solutions a potential contribution to be tested in earthquake and tsunami warning systems in Italy and surrounding regions. We will show the RING architecture, from the data to the PPP results, an evaluation of the uncertainties, and some examples of offset detection for recent earthquakes.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-01-27
    Description: The brittle-ductile transition (BDT) separates the lower crust where deformation occurs in steady-state regime, from the upper crust where it is rather dominated by stick-slip. The fault hangingwall above BDT accumulates elastic energy during the interseismic period, without significant evidence of surface strain rate Faults activate in areas of high strain rate gradients along the segments with lower strain rates Fluid discharge varies as a function of the tectonic setting The phenomenology gives insights for the parameters to be monitored in earthquake forecasting
    Description: Italian Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile (DPC) within the INGV-DPC 2007-2009 agreement(project S1), Sapienza University and CNR-Eurocores-TopoEurope.
    Description: Unpublished
    Description: Brisbane Australia
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: brittle-ductile transition ; L' Aquila 2009 earthquake ; Emilia 2012 earthquake ; geodetic strain rate ; fault activation ; magnitude ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-08
    Description: A combined GPS velocity solution covering a wide area from Egypt to Middle East allowed us to infer the current rates across the main, already well known, tectonic features. We have estimated 126 velocities from time series of 90 permanent and 36 non permanent GPS sites located in Africa (Egypt), Eurasia and Arabia plates in the time span 1996–2015, the largest available for the Egyptian sites. We have combined our velocity solution in a least-squares sense with two other recent velocity solutions of networks located around the eastern Mediterranean, obtaining a final IGb08 velocity field of about 450 sites. Then, we have estimated the IGb08 Euler poles of Africa, Sinai and Arabia, analyzing the kinematics of the Sinai area, particular velocity profiles, and estimating the 2D strain rate field. We show that it is possible to reliably model the rigid motion of Sinai block only including some GPS sites located south of the Carmel Fault. The estimated relative motion with respect to Africa is of the order of 2–3 mm/yr, however there is a clear mismatch between the modeled and the observed velocities in the southern Sinai sites. We have also assessed the NNE left shear motion along the Dead Sea Transform Fault, estimating a relative motion between Arabia and Africa of about 6 mm/yr in the direction of the Red Sea opening.
    Description: Published
    Description: 231-238
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Africa; Arabia; Sinai; Gulf of Aqaba; Gulf of Suez; GPS; Combined velocity field; Euler poles ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-07-14
    Description: It is commonly believed that the Po Plain is an area of low seismic haz- ard. This conclusion is essentially a combination of two factors: (1) the historical record of earthquakes, which shows a relatively small number of events of moderate magnitude, and only two significant earthquakes, which occurred in the Middle Ages; and (2) the lack of ad-hoc research on the geology of earthquakes in this area, as although many studies have highlighted the local Quaternary tectonics, only a very few of them have discussed the observed evidence in terms of seismic hazard. In contrast, the data presented in the present study strongly suggest that the level of earthquake hazard in the Po Plain is comparable to that of the well- known seismic areas of the Apennine range, at least in terms of maxi- mum magnitudes. Indeed, the high population density and the concentration of industrial facilities make the Po Plain today one of the more high-risk areas of the Italian territory. The Po Plain represents the foredeep of two growing mountain belts, the southern Alps and the north- ern Apennines. Recently, modern active tectonics studies have been con- ducted along its margins to the south, along the northern Apennine Piedmont belt, and to the northeast, along the eastern southern Alpine Piedmont belt. However, in the central and western sectors of the Po Plain, where the south-verging western southern Alpine front links up with the north-verging Monferrato, Emilia and Ferrara arcs, the Qua- ternary history of tectonic deformation and faulting are still relatively poorly understood. These lie beneath the relatively flat alluvial surface of the Po River, and provide the evidence for paleoseismicity and the result- ing seismic hazard. In this review, we compile the data from the literature to reassess the style and magnitude of the ongoing crustal deformation and the associated earthquake faulting. This includes detailed informa- tion on historical and instrumental seismicity, extensive subsurface in- formation from the ENI industrial exploration, structural interpretation of three regional seismic reflection profiles, analysis of novel global posi- tioning system data, field mapping at selected key areas, and new paleo- seismological investigations. We show that along the western southern Alpine belt between Lake Garda and Lake Maggiore, the active tectonic setting is characterized by a segmented belt of fault-propagation folds. These are 50 km wide, and are controlled by the growth of out-of-se- quence, 10-to-20-km-long, north and south verging thrusts. Regional global positioning system data show ongoing shortening rates of the order of 1 mm/yr. Quaternary fault slip rates typically range between 0.2 mm/yr and 0.4 mm/yr. Pleistocene shortening is obvious not only along the western southern Alpine outer fronts that are buried beneath the Po Plain, but also along the south Alpine foothills between Brescia and Varese. Similar styles and rates of active folding and thrusting have also been documented along the frontal sector of the northern Apennine arcs, from Torino to Ferrara, and along the base of the Apennine mountain front between Piacenza and Bologna. We selected the Brescia and Como sectors in the western southern Alps and the Monferrato and Mirandola structures in the northern Apennines as examples to illustrate the seismic landscape of the study area, in terms of typical active structural, geo- morphic and paleoseismic features. We argue that the level of earthquake hazard in the Po Plain is comparable to that of the Apennine range. On May 20, 2012, a few days after this review was formally accepted for pub- lication, a M W 5.9 earthquake ruptured the Mirandola structure. The seismic sequence following this mainshock is ongoing, and we have added further information about this event (updated on June 3rd, 2012), which substantially confirms the conclusions arrived at here.
    Description: Published
    Description: 969-1001
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Active compressional tectonics ; paleoseismology ; seismic hazard ; Po Plain foredeep ; seismic landscape ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-03
    Description: Field surveys performed by different research groups after the April 6, 2009 L’Aquila earthquake (Mw 6.1; CHIARALUCE et alii, 2011) identified the occurrence of surface faulting along the Paganica normal fault, the causative seismogenic source of the event. The different researchers provided patterns of surface rupture that slightly differ as for the northern and southern portion of the Paganica fault. We here integrated coseismic geodetic data – DInSAR and GPS – with geological observations in order to discriminate what, among the different surface rupture patterns, can be considered as evidence of primary surface faulting. Our results indicated that the Mt. Stabiata-Mt. Castellano faults, to the north, and the San Demetrio fault, to the south – along to which BONCIO et alii (2010) and GALLI et alii (2010) detected ground ruptures, respectively – probably activated solely as sympathetic (sensu SleMMONS & DEPOLO, 1986; DEPOLO, 1994) tectonic structures during the 2009 earthquake. These observations allowed to constrain the extension of the primary surface faulting from the Collebrincioni sector to the area of San Gregorio, thus representing the northern and the southern tips of the Paganica fault, respectively. This defines a total surface rupture length of 12-13 km. Our results highlight the effectiveness of entwining geological and geodetic data to discriminate primary surface faulting from secondary fault ruptures, particularly in cases of moderate magnitude earthquakes, i.e. when modest and rather subtle surface faulting can occur.
    Description: Part of this work has been carried out within the ASI-SIGRIS project, funded by the Italian Space Agency and Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: 389-402
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: 2009 L’Aquila earthquake ; primary surface faulting ; sympathetic faulting ; Paganica fault ; central Apennines ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: A host of geophysical processes contribute to temporal variations in the low-degree zonal harmonics of the Earth’s gravity field. The present paper focuses on atmosphere-based mass redistributions using global surface pressure data from the NOAA Climate Diagnostics Center for the period 1980-2002. We computed atmosphere-triggered temporal variations of the Earth’s low-degree zonal gravitational coefficients Jl (l = 2 : 4). Such atmosphere-triggered ΔJl(t) are compared with the Arctic Oscillation Index (AOI) and with the observed ΔJl(t) computed by the Italian Space Agency (ASI) so as to investigate a possible coupling. We show that there is a significant agreement between the AOI and atmosphere-triggered ΔJl(t), as well as a particularly interesting correlation between the winter ΔJl(t) series and the AOI active season series.
    Description: Published
    Description: 529-538
    Description: JCR Journal
    Description: open
    Keywords: Arctic ; gravitational ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...