GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2019-07-17
    Description: The territory of Lithuania and adjacent areas of the East European Craton have always been considered a region of low seismicity. Two recent earthquakes with magnitudes of more than 5 in the Kaliningrad District (Russian Federation) on 21 September 2004 motivated re-evaluation of the seismic hazard in Lithuania and adjacent territories. A new opportunity to study seismicity in the region is provided by the PASSEQ (Pasive Seismic Experiment) project that aimed to study the lithosphere–asthenosphere structure around the Trans-European Suture Zone. Twenty-six seismic stations of the PASSEQ temporary seismic array were installed in the territory of Lithuania. The stations recorded a number of local and regional seismic events originating from Lithuania and adjacent areas. This data can be used to answer the question of whether there exist seismically active tectonic zones in Lithuania that could be potentially hazardous for critical industrial facilities. Therefore, the aim of this paper is to find any natural tectonic seismic events in Lithuania and to obtain more general view of seismicity in the region. In order to do this, we make a manual review of the continuous data recorded by the PASSEQ seismic stations in Lithuania. From the good quality data, we select and relocate 45 local seismic events using the well-known LocSAT and VELEST location algortithms. In order to discriminate between possible natural events, underwater explosions and on-shore blasts, we analyse spatial distribution of epicenters and temporal distribution of origin times and perform both visual analysis of waveforms and spectral analysis of recordings. We show that the relocated seismic events can be grouped into five clusters (groups) according to their epicenter coordinates and origin and that several seismic events might be of tectonic origin. We also show that several events from the off-shore region in the Baltic Sea (at the coasts of the Kaliningrad District of the Russian Federation) are non-volcanic tremors, although the origin of these tremor-type events is not clear.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-20
    Description: Ultraslow spreading ridges form the slowest divergent plate boundaries on Earth. Their distinct spreading processes build volcanically active magmatic segments in between amagmatic segments that exhibit mantle rocks at the seafloor. Local seismicity studies along ultraslow spreading ridges are up to now limited in their extend and can only give insights into spreading processes of segment parts. With our new microseismicity dataset we extend the coverage to multiple segments allowing us to study spreading processes on the scale of entire segments. The network of ocean bottom seismometers consisted of 26 stations deployed for one year approximately 160 km along the Knipovich Ridge in the Greenland Sea. More than 8000 events were reliably located with HYPOSAT and they exhibit a varying seismicity pattern along the rift axis. Maximum earthquake hypocentres shallow over distances of 70 km towards the Logachev volcanic centre, where swarm activity occurs in an otherwise aseismic zone. The undulating brittle-ductile boundary might map the focusing of melt towards major volcanic centres along the parallel lithosphere-asthenosphere boundary. Numerous earthquake swarms close by the volcanic centre indicate its current activity. The absence of shallow seismicity in the upper 8 km underlain by a band of seismicity characterizes presumably melt-poor regions. Both boundaries of the seismicity band are supposedly temperature controlled. Aseismic zones may mark areas, where mantle rocks are altered and too weak to exhibit seismicity recorded by our network. One of the studied segments cannot be identified as magmatic or amagmatic, rather the reorientation of the ridge axis in this area and related changes in the stress regime might lead to a more complex seismicity pattern. Although detachment faults are expected along amagmatic spreading segments, we do not observe clear indication on this type of faulting. We observe a fine-scale segmentation of seismic activity similar to a stripe and gap pattern, where the seismicity band narrows and only little activity is observed within an otherwise broad seismicity band. This can possibly indicate transform motion on short obliquely oriented faults producing small magnitude events not recorded by our network.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-01-28
    Description: Ultraslow spreading ridges form the slowest divergent plate boundaries and exhibit distinct spreading processes in volcanically active magmatic sections and intervening amagmatic sections. Local seismicity studies of ultraslow spreading ridges until now cover only parts of segments and give insight into spreading processes at confined locations. Here we present a microseismicity dataset that allows to study spreading processes on the scale of entire segments. Our network of 26 ocean bottom seismometers covered around 160 km along axis of the ultraslow spreading Knipovich Ridge in the Greenland Sea and recorded earthquakes for a period of about one year. We find seismicity varying distinctly along‐axis. The maximum earthquake depths shallow over distances of 70 km towards the Logachev volcanic center. Here, swarm activity occurs in an otherwise aseismic zone. Melts may thus be guided along the subparallel topography of the lithosphere‐asthenosphere boundary towards major volcanic centers explaining the uneven along‐axis melt distribution typical for ultraslow ridges. Absence of shallow seismicity in the upper 8 km of the lithosphere with a band of deep seismicity underneath offsets presumably melt‐poor regions from magma richer sections. Aseismic deformation in these regions may indicate weakening of mantle rocks by alteration. We do not find obvious indications for major detachment faulting that characterizes magma‐poor spreading at some ultraslow spreading segments. The highly oblique spreading of Knipovich Ridge may be the reason for a fine‐scale segmentation of the seismic activity with zones of weak seismicity possibly indicating transform motion on short obliquely oriented faults.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: Knipovich Ridge passive seismic experiment (KNIPAS) is a state-of-the-art seismological project that studies on segment scale the active spreading processes of an ultraslow mid-ocean ridge. The generation of new ocean floor is accompanied by characteristic seismicity that reflects ongoing spreading events and the physical state of the young lithosphere, and differs widely depending on spreading rate. While fast spreading ridges hardly show earthquakes that are large enough to be recorded on land, magmatic spreading events at the slowest spreading centres seem to be regularly preceded by earthquakes larger than M 5. The depth limit of earthquakes and their presence and absence reveal along-axis variations in the thermal and mechanical regime of the lithosphere. Therefore, it is necessary to record earthquakes locally with ocean bottom seismometers (OBS). Such surveys, however, typically have limited spatial extent and cannot reveal segment-scale spreading processes like along-axis melt flow, while spatially more extended data sets of hydro-acoustically recorded earthquakes yield no information on focal depth and can therefore not constrain lithospheric thickness or temperature. The project KNIPAS instrumented for the first time an entire ridge segment with OBS. During Polarstern cruise PS100 in July-September 2016 we deployed 23 OBS of the German Instrument Pool for Amphibian Seismology (DEPAS) along a 160 km long ridge section that covers Logachev Seamount and a neighbouring volcanic centre. An additional 3 OBS of the Institute of Geophysics, Polish Academy of Sciences, were deployed around Logachev Seamount. The instruments recorded seismicity until July-October 2017 depending on capacity. Cruise MSM67 of Maria S. Merian acquired wide-angle seismic profiles across Logachev Seamount and the subsequent cruise MSM68 successfully recovered all OBS. We now have a comprehensive seismological dataset at hand that will contain despite partly high noise levels in the vicinity of Logachev volcano an expected 9000 earthquakes M〉1 and several dozens of well-recorded teleseismic events to study spatial variations of seismicity, thermal structure and lithospheric thickness of an ultraslow spreading ridge. In a joint project we will combine the expertise of our work groups to study seismicity pattern, analyse the large-scale lithospheric structure with modern passive seismic methods to be adapted for the special conditions of marine seismic surveys and to image at high resolution the structure of a volcanic centre.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-07-21
    Description: Ultraslow spreading ridges form the slowest divergent plate boundaries and exhibit distinct spreading processes in volcanically active magmatic sections and intervening amagmatic sections. Local seismicity studies of ultraslow spreading ridges until now cover only parts of segments and give insight into spreading processes at confined locations. Here, we present a microseismicity data set that allows to study spreading processes on the scale of entire segments. Our network of 26 ocean bottom seismometers covered around 160 km along axis of the ultraslow spreading Knipovich Ridge in the Greenland Sea and recorded earthquakes for a period of about 1 year. We find seismicity varying distinctly along‐axis. The maximum earthquake depths shallow over distances of 70 km toward the Logachev volcanic center. Here, swarm activity occurs in an otherwise aseismic zone. Melts may thus be guided along the subparallel topography of the lithosphere‐asthenosphere boundary toward major volcanic centers explaining the uneven along‐axis melt distribution typical for ultraslow ridges. Absence of shallow seismicity in the upper 8 km of the lithosphere with a band of deep seismicity underneath offsets presumably melt‐poor regions from magma richer sections. Aseismic deformation in these regions may indicate weakening of mantle rocks by alteration. We do not find obvious indications for major detachment faulting that characterizes magma‐poor spreading at some ultraslow spreading segments. The highly oblique spreading of Knipovich Ridge may be the reason for a fine‐scale segmentation of the seismic activity with zones of weak seismicity possibly indicating transform motion on short obliquely oriented faults.
    Description: Plain Language Summary: At mid‐ocean spreading ridges, tectonic plates drift apart and new seafloor is built by upwelling magma. The slowest spreading ridges do not receive enough magma to build new seafloor along the entire ridge. Rather, they show widely spaced volcanic centers with magma‐poor areas in‐between. The study of small earthquakes with seismometers placed on the seafloor has greatly helped to understand how new seafloor forms. Since such studies require substantial logistic effort, only confined ridge sections have been studied and spreading processes operating at segment‐scale remain poorly understood. In this study, we present for the first time observations of earthquakes covering several segments and one major volcanic center along the Knipovich Ridge in the Greenland Sea. Underneath the volcano, earthquake swarms and a gap in seismicity indicate recent magmatic activity. The maximum depth of earthquakes marks the thickness of the mechanically strong lithosphere. It shallows over 70 km toward the volcano such that melts can be channeled over large distances to the prominent volcanoes. Magma‐poor regions have deep earthquakes but do not show earthquake activity in the upper 8 km. We suppose that water reacts with the mantle rocks that become too weak to break in earthquakes.
    Description: Key Points: Magma‐poor sections are distinguished from magma‐rich sections by deeper hypocenters and an absence of shallow seismicity. Shallowing maximum earthquake depths over distances of 70 km suggest along‐axis melt focusing toward major volcanic centers. Major detachment faults on the highly oblique spreading Knipovich Ridge were not obvious in the observed seismicity.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Helmholtz Excellence Network POSY at the Alfred Wegener Institute
    Description: Ministry of Science and Higher Education of Poland
    Keywords: 551 ; amagmatic ; Knipovich Ridge ; mid‐ocean ridge ; segmentation ; seismicity ; ultraslow spreading
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    POLISH ACAD SCIENCES COMMITTEE POLAR RESEARCH
    In:  EPIC3Polish Polar Research, POLISH ACAD SCIENCES COMMITTEE POLAR RESEARCH, 32(4), pp. 375-392, ISSN: 0138-0338
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-12-16
    Description: PASSEQ 2006-2008 (Passive Seismic Experiment in TESZ; Wilde-Piórko et al. 2008) was the biggest passive seismic experiment carried out so far in the area of Central Europe (Poland, Germany, the Czech Republic and Lithuania). 196 seismic stations (including 49 broadband seismometers) worked simultaneously for over two years. During the experiment, multiple types of data recorders and seismometers were used, making the analysis more complex and time consuming. The dataset was unified and repaired to start the detection of local seismic events. Two different approaches for detection were applied for stations located in Poland. The first one used standard STA/LTA triggers (Carl Johnson’s STA/LTA algorithm) and grid search to classify and locate the events. The result was manually verified. The second approach used Real Time Recurrent Network (RTRN) detection (Wiszniowski et al. 2014). Both methods gave similar results, showing four previously unknown seismic events located in the Gulf of Gdansk area, situated in the southern Baltic Sea. In this paper we discuss both detection methods with their pros and cons (accuracy, efficiency, manual work required, scalability). We also show details of all detected and previously unknown events in the discussed area.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...