GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: A channel-forming protein was identified in cell wall extracts of the Gram-positive, strictly aerobic bacterium Nocardia farcinica. The cell wall porin was purified to homogeneity and had an apparent molecular mass of about 87 kDa on tricine-containing SDS–PAGE. When the 87 kDa protein was boiled for a longer time in sodium dodecylsulphate (SDS) it dissociated into two subunits with molecular masses of about 19 and 23 kDa. The 87 kDa form of the protein was able to increase the specific conductance of artificial lipid bilayer membranes from phosphatidylcholine (PC) phosphatidylserine (PS) mixtures by the formation of ion-permeable channels. The channels had on average a single-channel conductance of 3.0 nS in 1 M KCl, 10 mM Tris-HCl, pH 8, and were found to be cation selective. Asymmetric addition of the cell wall porin to lipid bilayer membranes resulted in an asymmetric voltage dependence. The single-channel conductance was only moderately dependent on the bulk aqueous KCl concentration, which indicated point charge effects on the channel properties. The analysis of the single-channel conductance data in different salt solutions using the Renkin correction factor, and the effect of negative charges on channel conductance suggested that the diameter of the cell wall porin is about 1.4–1.6 nm. Channel-forming properties of the cell wall porin of N. farcinica were compared with those of mycobacteria and corynebacteria. The cell wall porins of these members of the order Actinomycetales share common features because they form large and water-filled channels that contain negative point charges.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1017
    Keywords: Key words Dipole potential ; Dipole moment ; Langmuir adsorption isotherm ; Conformational analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract  The interaction of phloretin with single lipid bilayers on a spherical support and with multilamellar vesicles was studied by differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR). The results indicated that phloretin interacts with the lipid layer and changes its structural parameters. In DSC experiments, phloretin in its neutral form strongly decreased the lipid phase transition temperature and slightly reduced the cooperativity of the phase transition within the lipid layer. In NMR measurements, phloretin led to an increase of the transverse relaxation time constant but had no effect on the spin-lattice relaxation time constant. The overall dipole moment of phloretin was experimentally determined and was found to be roughly 40% lower than has been published previously. This result suggested that the size of the dipole moment of phloretin does not provide such a high contribution to the effect of phloretin on the dipole potential of monolayers and bilayers as has been published previously. To understand the discrepancy between phloretin adsorption and dipole potential change, we performed computational conformational analysis of phloretin in the gas phase. The results showed that a wide distribution of the dipole moments of phloretin conformers exists, which mainly depends on the orientation of the OH moieties. The adsorption of phloretin as determined from its binding to solid supported bilayers differed from the one determined from dipole potential measurements on black lipid membranes. The difference between the phloretin dissociation constants of both types of experiments suggested a change of its dipole moment normal to the membrane surface in a concentration-dependent manner, which was in agreement with the results of the computational conformational analysis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...