GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Marine mammal science 19 (2003), S. 0 
    ISSN: 1748-7692
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Managing escalating human impacts on nearshore cetaceans requires information on a species' demography and distribution patterns at appropriate spatial scales. Identification photographs of individuals of a population of inshore Indo-Pacific bottlenose dolphins, Tursiops aduncus, were obtained in the open coastal waters off North Stradbroke Island, Australia and used to estimate population density and residency. Five hundred and eighty-one individuals were identified from 342 school sightings during 1998 and 1999. Mark-recapture analysis using closed population models estimated a population size of between 700 and 1,000 individuals within the study area during winter, with evidence that the population contained resident individuals. This represents an extremely high number of dolphins within a small area, which requires a pre-emptive management strategy to ensure their continued occupancy.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Marine mammal science 15 (1999), S. 0 
    ISSN: 1748-7692
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The annual migrations of baleen whales are a conspicuous but unexplained feature of their behavioral repertoire. Some hypotheses offered to explain whale migration focus on direct benefits to the calf (thermoregulation, calm water) and some do not (resource tracking, and the “evolutionary holdover” hypothesis). Here, we suggest that a major selective advantage to migrating pregnant female baleen whales is a reduced risk of killer whale (Orcinus orca) predation on their newborn calves in low-latitude waters. Killer whale abundance in high latitudes is substantially greater than that in lower latitudes, and most killer whales do not appear to migrate with baleen whales. We suggest that the distribution of killer whales is determined more by their primary marine mammal prey, pinnipeds, and that following the baleen whale migrations would remove them from their pinniped prey. There are problems with all current hypotheses, most of which stem from a lack of directed research. We explore variation in migratory habits between species, populations, and individuals that may provide a “natural laboratory” for discriminating among the competing hypotheses.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Marine mammal science 17 (2001), S. 0 
    ISSN: 1748-7692
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Marine mammal science 17 (2001), S. 0 
    ISSN: 1748-7692
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Marine mammal science 11 (1995), S. 0 
    ISSN: 1748-7692
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We present a new sound type recorded from bottlenose dolphins, Tursiops truncatus, in eastern Australian waters: low-frequency, narrow-band (LFN) harmonic sounds (defined as less than 2 kHz). Most of these sounds were of frequencies less than 1 kHz and were recorded commonly from socializing dolphins. These sounds differ significantly from narrow-band whistles, which are higher in frequency and longer in duration. The absence of these sounds in most studies of the acoustic behavior of bottlenose dolphins may reflect geographic differences in repertoires or result from insufficient sampling. Alternatively, these sounds may have been ignored where the focus of research was on other sound types.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Polar biology 22 (1999), S. 213-215 
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract There are no published accounts of blue whales (Balaenoptera musculus) feeding in Antarctic waters. This note describes the behaviour of two groups of blue whales feeding in Antarctic pelagic waters. Whales were observed during the 18th IWC/IDCR southern hemisphere minke whale assessment cruise. Feeding behaviour in both cases resembled those described previously for both northern hemisphere blue whales and fin whales (B. physalus). These observations suggest that a programme of comparative behavioural observations could be developed to test the “feeding competition” hypothesis, which suggests that recovery of populations of blue whales will be impeded by feeding competition with sympatric minke whales.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 13460, doi:10.1038/s41598-017-13359-3.
    Description: Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.
    Description: This research was funded and supported by many organizations, specified by projects as follows: Data recordings from region 1 were provided by K. Stafford and this research effort was funded by the National Science Foundation #NSF-ARC 0532611. Region 2 data were provided by D. K. Mellinger and S. Nieukirk, funded by National Oceanic and Atmospheric Agency (NOAA) and the Office of Naval Research (ONR) #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244-08-1-0029, N00244-09-1-0079, and N00244-10-1-0047.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-09-29
    Description: Infrared thermography (IRT) is a non-invasive, contactless tool for measuring the thermal radiation emitted from an object’s surface. Combined with advancements in remotely piloted aircraft systems (RPAS, commonly “drones”), IRT is being used for detection, counting, and physiological studies of marine mammals. Critically endangered North Atlantic right whales (NARWs, Eubalaena glacialis) were observed in Cape Cod Bay, United States in 2017–2018 with RPAS-based IRT. We discuss four applications of RPAS-based IRT to study the thermal physiology of large whales: 1) exploring patterns of cranial heat loss; 2) tracking subsurface individuals in real-time using thermal “footprints” – cold surface water anomalies resulting from fluke upstrokes; 3) diagnosing pathology or detecting natural changes in superficial blood circulation; and 4) measuring blowhole temperatures as a proxy for internal body temperatures and possibly health of individual whales. IRT of NARW rostra demonstrated that the peri-callosity epithelium radiates more heat than other superficial cranial tissues; we hypothesize that the source of this heat is the underlying corpus cavernosum maxillaris. Thermal footprints were most visible on calm, sunny days, likely due to thermal stratification of the upper water column. A diffuse patch of heat on the caudal dorsum of one NARW may have been indicative of superficial changes in blood flow, potentially associated with pathology or heat dissipation. Finally, we emphasize the need to properly calibrate IRT data before interpreting temperatures of blowholes, although we do believe this technology could be used to approximate near-core body temperatures in the future. RPAS-based IRT presents a new, important opportunity to study and monitor large whales, particularly endangered species like NARWs. Despite the challenges of using aerial IRT in aquatic environments, we believe its applications in marine mammal research will continue to diversify.
    Description: This project was funded by National Marine Fisheries Service grant, NA14OAR4320158 and the North Pond Foundation.
    Keywords: drone ; cetacean ; health ; temperature ; right whale
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-21
    Description: The critically endangered status of North Atlantic right whales (NARWs, Eubalaena glacialis) warrants the development of new, less invasive technology to monitor the health of individuals. Combined with advancements in remotely piloted aircraft systems (RPAS, commonly “drones”), infrared thermography (IRT) is being increasingly used to detect and count marine mammals and study their physiology. We conducted RPAS-based IRT over NARWs in Cape Cod Bay, Massachusetts, USA in 2017 and 2018. Observations demonstrated three particularly useful applications of RPAS-based IRT to study large whales: 1) exploring patterns of cranial heat loss and providing insight into the physiological mechanisms that produce these patterns; 2) tracking subsurface individuals in real-time (depending on the thermal stratification of the water column) using cold surface water anomalies resulting from fluke upstrokes; and 3) detecting natural changes in superficial blood circulation or diagnosing pathology based on hot anomalies on post-cranial body surfaces. These qualitative applications present a new, important opportunity to study and monitor large whales, particularly rare and at-risk species like NARWs. Despite the challenges of using this technology in aquatic environments, the applications of RPAS-based IRT for monitoring the health and behavior of endangered marine mammals, including the collection of quantitative data on thermal physiology, will continue to diversify.
    Keywords: Drone ; Cetacean ; Health ; Temperature ; Right whale
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Christiansen, F., Dawson, S. M., Durban, J. W., Fearnbach, H., Miller, C. A., Bejder, L., Uhart, M., Sironi, M., Corkeron, P., Rayment, W., Leunissen, E., Haria, E., Ward, R., Warick, H. A., Kerr, I., Lynn, M. S., Pettis, H. M., & Moore, M. J. Population comparison of right whale body condition reveals poor state of the North Atlantic right whale. Marine Ecology Progress Series, 640, (2020): 1-16, doi:10.3354/meps13299.
    Description: The North Atlantic right whale Eubalaena glacialis (NARW), currently numbering 〈410 individuals, is on a trajectory to extinction. Although direct mortality from ship strikes and fishing gear entanglements remain the major threats to the population, reproductive failure, resulting from poor body condition and sublethal chronic entanglement stress, is believed to play a crucial role in the population decline. Using photogrammetry from unmanned aerial vehicles, we conducted the largest population assessment of right whale body condition to date, to determine if the condition of NARWs was poorer than 3 seemingly healthy (i.e. growing) populations of southern right whales E. australis (SRWs) in Argentina, Australia and New Zealand. We found that NARW juveniles, adults and lactating females all had lower body condition scores compared to the SRW populations. While some of the difference could be the result of genetic isolation and adaptations to local environmental conditions, the magnitude suggests that NARWs are in poor condition, which could be suppressing their growth, survival, age of sexual maturation and calving rates. NARW calves were found to be in good condition. Their body length, however, was strongly determined by the body condition of their mothers, suggesting that the poor condition of lactating NARW females may cause a reduction in calf growth rates. This could potentially lead to a reduction in calf survival or an increase in female calving intervals. Hence, the poor body condition of individuals within the NARW population is of major concern for its future viability.
    Description: North Atlantic: NOAA NA14OAR4320158; Australia: US Office of Naval Research Marine Mammals Program (Award No. N00014-17-1-3018), the World Wildlife Fund for Nature Australia and a Murdoch University School of Veterinary and Life Sciences Small Grant Award; New Zealand: New Zealand Antarctic Research institute (NZARI 2016-1-4), Otago University and NZ Whale and Dolphin Trust; Argentina: National Geographic Society (Grant number: NGS-379R-18).
    Keywords: Baleen whale ; Bioenergetics ; Eubalaena ; Morphometrics ; Photogrammetry ; Unmanned aerial vehicles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...