GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 108 (1991), S. 93-105 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Isothermal or isobaric phase diagram sections as a function of fluid composition (X F) are widely used for interpreting the genetic history of metacarbonate rocks. This approach has the disadvantages that: (1) the influence of a key metamorphic variable, either pressure (P) or temperature (T), is obscured; (2) the diagrams are inappropriate for systems that are not fluid-saturated. These problems are avoided by constructing phase-diagram projections in which the volatile composition of the system is projected onto a P-T coordinate frame, i.e., a petrogenetic grid. The univariant curves of such P-T projections trace the conditions of the invariant points of isothermal or isobaric phase-diagram sections, thereby defining the absolute stability of high-variance mineral assemblages, with and without a coexistent fluid phase. Petrogenetic grids for metacarbonate rocks are most useful for the study of regional metamorphism and for systems in which fluid composition has not been externally controlled. A calculated example of a P-T projection for the system CaO−MgO−SiO2−H2O−CO2 suggests that many assemblages (e.g., calcite +tale, enstatite+fluid, magnesite+tremolite, antigorite+diopside+dolomite, and calcite+forsterite+tremolite) in mixed-volatile systems have stability fields that make them useful as P-T indicators. Consideration of the principles governing projection topology demonstrates that the univariant curves around a fluid present invariant point cannot be oriented independently with respect to the direction of compositional variation in the fluid phase. This has the interesting predictive implication that if the direction of compositional variation along one univariant curve around an invariant point is known, then the direction of compositional variation along the remaining curves can be determined solely from topologic constraints. The same constraints can be applied to systems containing simple mineral solutions or melts in order to predict compositional variations.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 104 (1990), S. 1-7 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Published phase diagrams for the siliceous carbonate system CaO−MgO−SiO2−CO2−H2O are contradictory because of different estimates of the relative stability of magnesite. Experimental data on magnesite are too ambiguous to determine the validity of these estimates. Therefore, field evidence is used to select the correct phase diagram topology for siliceous carbonate and carbonate ultramafic rocks at pressures of about 2–5 kbar. The primary selection criterion is provided by the existence of the stable assemblage talc+dolomite+forsterite+tremolite+antigorite, which occurs in the Bergell contact aureole and Swiss Central Alps. Field evidence also is used to argue that the reaction magnesite+quartz=enstatite must occur at lower temperature than the reaction dolomite+quartz=diopside. T-X CO 2 and P CO 2-T phase diagrams consistent with these observations are calculated from experimental and thermo-dynamic data. For antigorite ophicarbonate rocks, remarkable agreement is obtained between the spatial distribution of low variance mineral assemblages and the calculated diagrams.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 102 (1989), S. 347-366 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Models for regional metamorphism have been constructed to determine the thermal effects of reaction enthalpy and the amount of fluid generated by dehydration metamorphism. The model continental crust contains an average of 2.9 wt % water and dehydrates by a series of reactions between temperatures of 300 and 750° C. Large scale metamorphism is induced by instantaneous collision belt thickening events which double the crustal thickness to 70 km. After a 20 Ma time lag, erosion due to isostatic rebound restores the crust to its original thickness in 100 Ma. At crustal depths greater than 10 km, where most metamorphism takes place, fluid pressure is unlikely to deviate significantly from lithostatic pressure. This implies that lower crustal porosity can only be maintained if rock pores are filled by fluid. Therefore, porosities are primarily dependent on the rate of metamorphic fluid production or consumption and the crustal permeability. In the models, permeability is taken as a function of porosity; this permits estimation of both fluid fluxes and porosities during metamorphism. Metamorphic activity, as measured by net reaction enthalpy, can be categorized as endothermic or exothermic depending on whether prograde dehydration or retrograde hydration reactions predominate. The endothermic stage begins almost immediately after thickening, peaks at about 20 Ma, and ends after 40 to 55 Ma. During this period the maximum and average heat consumption by reactions are on the order 11.2·10−14 W/cm3 and 5.9·10−14 W/ cm3, respectively. The maximum rates of prograde isograd advance decrease from 2.4·10−8 cm/s, for low grade reactions at 7 Ma, to 7·10−10 cm/s, for the highest grade reaction between 45 and 58 Ma. Endothermic cooling reduces the temperature variation in the metamorphic models by less than 7% (40 K); in comparison, the retrograde exothermic heating effect is negligible. Dehydration reactions are generally poor thermal buffers, but under certain conditions reactions may control temperature over depth and time intervals on the order of 1 km and 3 Ma. The model metamorphic events reduce the hydrate water content of the crust to values between 1.0 and 0.4 wt % and produce anhydrous lower crustal granulites up to 15 km in thickness. In the first 60 Ma of metamorphism, steady state fluid fluxes in the rocks overlying prograde reaction fronts are on the order of 5·10−11 g/cm2-s. These fluid fluxes can be accommodated by low porosities (〈0.6%) and are thus essentially determined by the rate of devolitalization. The quantity of fluid which passes through the metamorphic column varies from 25000 g/cm2, within 10 km of the base of the crust, to amounts as large as 240000 g/cm2, in rocks initially at a depth of 30 km. Measured petrologic volumetric fluid-rock ratios generated by this fluid could be as high as 500 in a 1 m thick horizontal layer, but would decrease in inverse proportion of the thickness of the rock layer. Fluid advection causes local heating at rates of about 5.9·10−14 W/cm3 during prograde metamorphism and does not result in significant heating. The amount of silica which can be transported by the fluids is very sensitive to both the absolute temperature and the change in the geothermal gradient with depth. However, even under optimal conditions, the amount of silica precipitated by metamorphic fluids is small (〈0.1 vol %) and inadequate to explain the quartz veining observed in nature. These results are based on equilibrium models for fluid and heat transport that exclude the possibility of convective fluid recirculation. Such a model is likely to apply at depths greater than 10 km; therefore, it is concluded that large scale heat and silica transport by fluids is not extensive in the lower crust, despite large time-integrated fluid fluxes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Central American arc volcanism shows strong regional trends in lava chemistry that result from differing slab contributions to arc melting. However, the mechanism that transfers slab-derived trace elements into the mantle wedge remains largely unknown. By using a dynamic model for mantle flow and fluid release, we model the fate of three different slab-fluid sources: sediment, ocean crust, and serpentinized mantle. In the open subarc system, sediments lose almost all their highly fluid mobile elements by ∼50 km depth, so other fluid sources are necessary to explain the slab signal in arc-lava compositions. The well-documented transition from lavas with a strong geochemical slab signature (i.e., high Ba/La ratios) found in Nicaragua to lavas with a weaker slab signature (i.e., low Ba/La ratios) erupted in Costa Rica seems easiest to produce by a higher fraction of serpentine-hosted fluids released from the deeply faulted, highly serpentinized lithosphere subducting beneath Nicaragua than from the less deeply faulted, thicker, amphibolitic oceanic-crust and oceanic-plateau lithosphere subducting beneath Costa Rica.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...