GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2021-07-03
    Description: The instrument package SEIS (Seismic Experiment for Internal Structure) with the three very broadband and three short‐period seismic sensors is installed on the surface on Mars as part of NASA's InSight Discovery mission. When compared to terrestrial installations, SEIS is deployed in a very harsh wind and temperature environment that leads to inevitable degradation of the quality of the recorded data. One ubiquitous artifact in the raw data is an abundance of transient one‐sided pulses often accompanied by high‐frequency spikes. These pulses, which we term “glitches”, can be modeled as the response of the instrument to a step in acceleration, while the spikes can be modeled as the response to a simultaneous step in displacement. We attribute the glitches primarily to SEIS‐internal stress relaxations caused by the large temperature variations to which the instrument is exposed during a Martian day. Only a small fraction of glitches correspond to a motion of the SEIS package as a whole caused by minuscule tilts of either the instrument or the ground. In this study, we focus on the analysis of the glitch+spike phenomenon and present how these signals can be automatically detected and removed from SEIS's raw data. As glitches affect many standard seismological analysis methods such as receiver functions, spectral decomposition and source inversions, we anticipate that studies of the Martian seismicity as well as studies of Mars' internal structure should benefit from deglitched seismic data.
    Description: Plain Language Summary: The instrument package SEIS (Seismic Experiment for Internal Structure) with two fully equipped seismometers is installed on the surface of Mars as part of NASA's InSight Discovery mission. When compared to terrestrial installations, SEIS is more exposed to wind and daily temperature changes that leads to inevitable degradation of the quality of the recorded data. One consequence is the occurrence of a specific type of transient noise that we term “glitch”. Glitches show up in the recorded data as one‐sided pulses and have strong implications for the typical seismic data analysis. Glitches can be understood as step‐like changes in the acceleration sensed by the seismometers. We attribute them primarily to SEIS‐internal stress relaxations caused by the large temperature variations to which the instrument is exposed during a Martian day. Only a small fraction of glitches correspond to a motion of the whole SEIS instrument. In this study, we focus on the detection and removal of glitches and anticipate that studies of the Martian seismicity as well as studies of Mars's internal structure should benefit from deglitched seismic data.
    Description: Key Points: Glitches due to steps in acceleration significantly complicate seismic records on Mars. Glitches are mostly due to relaxations of thermal stresses and instrument tilt. We provide a toolbox to automatically detect and remove glitches.
    Description: Centre National d'Etudes Spatiales (CNES)
    Description: InSight PSP Program
    Description: Agence Nationale de la Recherche http://dx.doi.org/10.13039/501100001665
    Description: ANR‐19‐CE31‐0008‐08
    Keywords: 523 ; InSight ; seismometer ; Mars ; data processing ; glitches ; removal
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-21
    Description: Since its deployment at the surface of Mars, the SEIS instrument of the InSight mission has detected hundreds of small magnitude seismic events. In this work, we highlight some features of two specific families: High-Frequency (HF) and Very-High-Frequency (VF) events. We characterize the shape of the energy envelopes of HF and VF events with two parameters: (1) The delay-time td between the onset and the peak of the dominant arrival; (2) The quality factor Qc which quantifies the energy decay rate in the coda. We observe that the envelope of HF and VF events is frequency-independent. As a consequence, a single delay-time su ces to characterize envelope broadening in the 2.5 - 7.5 Hz band. The typical coda decay time is also frequency-independent as attested by the close to linear increase of Qc with frequency. Finally, we use elastic radiative transfer theory to perform a series of inversion of seismogram envelopes for the attenuation properties of the Martian lithosphere. The good fit between synthetic and observed envelopes confirms that multiple scattering of elastic waves released by internal sources is a plausible explanation of the events characteristics. We quantify scattering and attenuation properties of Mars and highlight the di↵erences/similarities with the Earth and the Moon. The albedo, i.e. the contribution of scattering to the total attenuation, derived from VF events is very high which we interpret as a signature of a mostly dry medium. Our results also suggest a stratification of the scattering/attenuation properties.
    Description: Published
    Description: 3016–3034
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...