GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-03
    Description: In order to assess the global evolution of aerosol parameters affecting climate change, a long-term trend analyses of aerosol optical properties were performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann-Kendall (MK) statistical test associated with several prewhitening methods and with the Sen’s slope were used as main trend analysis methods. Comparisons with General Least Mean Square associated with Autoregressive Bootstrap (GLS/ARB) and with standard Least Mean Square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficients trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficients time series also exhibit primarily decreasing trends. For single scattering albedo, 52% of the sites exhibit statistically significant positive trends, mostly in Asia, Eastern/Northern Europe and Arctic, 18% of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 30% of sites have trends, which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10 year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10 year trends are primarily found for earlier periods (10 year trends ending in 2010-2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10 year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10 year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10 year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2010-2011 for all stations in the eastern and central US. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage enables a better global view of potential aerosol effects on climate changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-03
    Description: Currently many ground-based atmospheric stations include in-situ measurements of aerosol physical and optical properties, resulting in more than 20 long-term (〉10 yr) aerosol measurement sites in the Northern Hemisphere and Antarctica. Most of these sites are located at remote locations and monitor the aerosol particle number concentration, wavelength-dependent light scattering, backscattering, and absorption coefficients. The existence of these multi-year datasets enables the analysis of long-term trends of these aerosol parameters, and of the derived light scattering A° ngstro¨m exponent and backscatter fraction. Since the aerosol variables are not normally distributed, three different methods (the seasonal Mann-Kendall test associated with the Sen’s slope, the generalized least squares fit associated with an autoregressive bootstrap algorithm for confidence intervals, and the least-mean square fit applied to logarithms of the data) were applied to detect the long-term trends and their magnitudes. To allow a comparison among measurement sites, trends on the most recent 10 and 15 yr periods were calculated. No significant trends were found for the three continental European sites. Statistically significant trends were found for the two European marine sites but the signs of the trends varied with aerosol property and location. Statistically significant decreasing trends for both scattering and absorption coefficients (mean slope of −2.0%yr−1) were found for most North American stations, although positive trends were found for a few desert and high-altitude sites. The difference in the timing of emission reduction policy for the Europe and US continents is a likely explanation for the decreasing trends in aerosol optical parameters found for most American sites compared to the lack of trends observed in Europe. No significant trends in scattering coefficient were found for the Arctic or Antarctic stations, whereas the Arctic station had a negative trend in absorption coefficient. The high altitude Pacific island station of Mauna Loa presents positive trends for both scattering and absorption coefficients.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-03
    Description: We have analysed the trends of total aerosol particle number concentrations (N) measured at long-term measurement stations involved either in the Global Atmosphere Watch (GAW) and/or EU infrastructure project ACTRIS. The sites are located in Europe, North America, Antarctica, and on Pacific Ocean islands. The majority of the sites showed clear decreasing trends both in the full-length time series, and in the intra-site comparison period of 2001–2010, especially during the winter months. Several potential driving processes for the observed trends were studied, and even though there are some similarities between N trends and air temperature changes, the most likely cause of many northern hemisphere trends was found to be decreases in the anthropogenic emissions of primary particles, SO2 or some coemitted species. We could not find a consistent agreement between the trends of N and particle optical properties in the few stations with long time series of all of these properties. The trends of N and the proxies for cloud condensation nuclei (CCN) were generally consistent in the few European stations where the measurements were available. This work provides a useful comparison analysis for modelling studies of trends in aerosol number concentrations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-11-03
    Description: 〈jats:p〉Abstract. Aerosol particles are a complex component of the atmospheric system which influence climate directly by interacting with solar radiation, and indirectly by contributing to cloud formation. The variety of their sources, as well as the multiple transformations they may undergo during their transport (including wet and dry deposition), result in significant spatial and temporal variability of their properties. Documenting this variability is essential to provide a proper representation of aerosols and cloud condensation nuclei (CCN) in climate models. Using measurements conducted in 2016 or 2017 at 62 ground-based stations around the world, this study provides the most up-to-date picture of the spatial distribution of particle number concentration (Ntot) and number size distribution (PNSD, from 39 sites). A sensitivity study was first performed to assess the impact of data availability on Ntot's annual and seasonal statistics, as well as on the analysis of its diel cycle. Thresholds of 50 % and 60 % were set at the seasonal and annual scale, respectively, for the study of the corresponding statistics, and a slightly higher coverage (75 %) was required to document the diel cycle. Although some observations are common to a majority of sites, the variety of environments characterizing these stations made it possible to highlight contrasting findings, which, among other factors, seem to be significantly related to the level of anthropogenic influence. The concentrations measured at polar sites are the lowest (∼ 102 cm−3) and show a clear seasonality, which is also visible in the shape of the PNSD, while diel cycles are in general less evident, due notably to the absence of a regular day–night cycle in some seasons. In contrast, the concentrations characteristic of urban environments are the highest (∼ 103–104 cm−3) and do not show pronounced seasonal variations, whereas diel cycles tend to be very regular over the year at these stations. The remaining sites, including mountain and non-urban continental and coastal stations, do not exhibit as obvious common behaviour as polar and urban sites and display, on average, intermediate Ntot (∼ 102–103 cm−3). Particle concentrations measured at mountain sites, however, are generally lower compared to nearby lowland sites, and tend to exhibit somewhat more pronounced seasonal variations as a likely result of the strong impact of the atmospheric boundary layer (ABL) influence in connection with the topography of the sites. ABL dynamics also likely contribute to the diel cycle of Ntot observed at these stations. Based on available PNSD measurements, CCN-sized particles (considered here as either >50 nm or >100 nm) can represent from a few percent to almost all of Ntot, corresponding to seasonal medians on the order of ∼ 10 to 1000 cm−3, with seasonal patterns and a hierarchy of the site types broadly similar to those observed for Ntot. Overall, this work illustrates the importance of in situ measurements, in particular for the study of aerosol physical properties, and thus strongly supports the development of a broad global network of near surface observatories to increase and homogenize the spatial coverage of the measurements, and guarantee as well data availability and quality. The results of this study also provide a valuable, freely available and easy to use support for model comparison and validation, with the ultimate goal of contributing to improvement of the representation of aerosol–cloud interactions in models, and, therefore, of the evaluation of the impact of aerosol particles on climate. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-03
    Description: 〈jats:p〉Abstract. Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-12-07
    Description: Light-absorbing aerosols (LAAs) are short-lived climate forcers with a significant impact on Earth's radiative balance. LAAs include dust aerosols, black carbon (BC) and organic light-absorbing carbonaceous aerosol (collectively termed brown carbon, BrC), which have also been proven to be highly toxic. In this study, aerosol absorption at five wavelengths (ranging from ultraviolet to infrared) was monitored continuously using filter-based photometers during two winter seasons in 2020 and 2021 in the city of Modena (southern central Po Valley, northern Italy), at two regulatory air quality monitoring sites, along with other pollutants (coarse particulate matter, PM10; fine particulate matter, PM2.5; O3; NO; NO2; and C6H6) and the vehicular traffic rate. The aerosol optical depth (AOD) and other column aerosol optical properties were concurrently monitored at four wavelengths by an AErosol RObotic NETwork (AERONET) sun photometer under urban background conditions within Modena. In situ absorption levels were apportioned to both sources (fossil fuel and biomass burning) and species (BC and BrC), while columnar absorption was apportioned to BC, BrC and mineral dust. The combined analysis of the atmospheric aerosol and gas measurements and of the meteorological conditions (in situ and from the ERA5 reanalysis) identified the location of potential urban sources of BC and BrC, most likely related to traffic and biomass burning. In situ data show different diurnal/weekly patterns for BrC from biomass burning and BC from traffic, with minor differences between the background and the urban traffic conditions. AERONET version 3 absorption aerosol optical depth (AAOD) retrievals at four wavelengths allowed the estimation of the absorptive direct radiative effect due to LAAs over the same period under the reasonable assumption that the AOD signal is concentrated within the mixing layer. AERONET retrievals showed a modest correlation of columnar absorption with planetary boundary layer (PBL)-scaled in situ observations, although the correlation improved significantly during a desert dust transport event that affected both in situ aerosol and columnar absorption, particularly in the blue spectrum range. A low correlation occurred between the contribution of BrC to aerosol absorption for the in situ and the columnar observations, with the BrC contribution being generally larger for in situ observations. Finally, evidence of a highly layered atmosphere during the study period, featuring significant spatial mixing and modest vertical mixing, was shown by ERA5-based atmospheric temperature profiles and by the large correlation of concurrent AERONET AOD retrievals in Modena and in Ispra (on the northwestern side of the Po Valley, ca. 225 km from Modena).
    Description: Published
    Description: 14841–14869
    Description: OSA2: Evoluzione climatica: effetti e loro mitigazione
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...