GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Hearing. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (227 pages)
    Edition: 1st ed.
    ISBN: 9783319215303
    Series Statement: Springer Handbook of Auditory Research Series ; v.64
    DDC: 612.85
    Language: English
    Note: Intro -- Dedication -- Acoustical Society of America -- Series Preface -- Preface 1992 -- Volume Preface -- Contents -- Contributors -- Chapter 1: Auditory System Development: A Tribute to Edwin W Rubel -- 1.1 Contributions to Science -- 1.1.1 Early Career -- 1.1.2 Auditory Brainstem -- 1.1.3 Dendritic Regulation -- 1.1.4 Cochlea Frequency-Place Map -- 1.1.5 Hair Cell Regeneration -- 1.1.6 Prevention of Hearing Loss -- 1.1.7 Scientific Community -- 1.2 Overview of Chapters -- 1.2.1 Development of the Mechanosensory Periphery -- 1.2.2 Auditory Brainstem Development -- 1.2.3 Development of Auditory Perception -- 1.3 Conclusions -- References -- Chapter 2: Development and Regeneration of Sensory Hair Cells -- 2.1 Introduction -- 2.2 Hair Cell Development -- 2.2.1 Sensorineural Development in the Inner Ear -- 2.2.2 Initial Differentiation of Hair Cells -- 2.2.2.1 Atoh1 Is Necessary and Sufficient for Hair Cell Formation -- 2.2.2.2 Regulation of Hair Cell and Supporting Cell Fates Through Notch Signaling -- 2.2.2.3 Onset of Atoh1 Expression -- 2.2.3 Hair Cell Development Beyond Atoh1 -- 2.2.4 Summary of Development -- 2.3 Hair Cell Regeneration -- 2.3.1 Overview -- 2.3.2 Hair Cell Injury, Death, and Repair -- 2.3.3 Hair Cell Regeneration in Nonmammalian Vertebrates -- 2.3.3.1 Hair Cell Progenitors in Nonmammalian Vertebrates: Identity and Behavior -- 2.3.3.2 Morphological and Functional Maturation of Regenerated Hair Cells in Nonmammalian Vertebrates -- 2.3.4 Hair Cell Regeneration in Mammals: The Cochlea -- 2.3.5 Hair Cell Regeneration in Mammals: Vestibular Organs -- 2.3.6 Molecular Control of Hair Cell Regeneration in Nonmammals -- 2.3.6.1 Regulators of Supporting Cell Division in Nonmammals -- 2.3.6.2 Regulators of Hair Cell Differentiation in Nonmammals -- 2.3.6.3 Factors Limiting Hair Cell Regeneration in Mammals. , 2.3.7 Future Considerations for Hair Cell Regeneration -- 2.3.8 Summary -- References -- Chapter 3: The Molecular and Cellular Mechanisms of Zebrafish Lateral Line Development -- 3.1 Introduction -- 3.2 Early Development of the Lateral Line -- 3.2.1 Formation of Lateral Line Placodes -- 3.2.2 Molecular Mechanisms of Lateral Line Placode Formation -- 3.3 Development of the Posterior Lateral Line System -- 3.3.1 Primordia Migration Forms the Zebrafish Lateral Line -- 3.3.2 Organization of the pLLP -- 3.3.3 Progenitor Cell Identity and Maintenance -- 3.3.4 FGF Signaling and Proto-NM Formation -- 3.3.5 Regulation of NM Deposition and Spacing -- 3.3.6 Directional Migration -- 3.3.7 Hair Cell Specification and Differentiation -- 3.4 Mechanosensory Hair Cells of the Lateral Line -- 3.4.1 Development and Physiology -- 3.5 Posterior Lateral Line Innervation -- 3.5.1 Pioneer Axon Extension and Pathfinding -- 3.5.2 Peripheral Topography and Central Somatotopy of the pLL -- 3.5.3 The Unexplored Role of Efferents -- 3.5.4 Innervation of Planar Polarized Hair Cells -- 3.6 Postembryonic Lateral Line Development in the Zebrafish -- 3.7 Summary -- References -- Chapter 4: Glutamate Signaling in the Auditory Brainstem -- 4.1 Introduction to Glutamate Signaling -- 4.2 Synaptic Excitation -- 4.2.1 Presynaptic Release -- 4.2.2 Ionotropic Glutamate Receptors -- 4.2.3 Metabotropic Glutamate Receptors -- 4.2.4 Calcium Signaling -- 4.3 Development of Synaptic Excitation -- 4.3.1 Morphology and Physiology -- 4.3.2 Cotransmission: Excitation Mediated by Inhibitory Neurotransmitters -- 4.4 Activity-Dependent Regulation of Glutamate Signaling -- 4.4.1 Short-Term Synaptic Plasticity -- 4.4.2 Long-Term Synaptic Plasticity -- 4.4.3 Pathophysiology and Glutamate Signaling -- 4.5 Neuromodulation of Glutamate Signaling -- 4.5.1 Homosynaptic Modulation. , 4.5.2 Heterosynaptic Modulation -- 4.6 Summary -- References -- Chapter 5: Development and Function of Inhibitory Circuitry in the Avian Auditory Brainstem -- 5.1 Introduction: The Elegant Circuit -- 5.1.1 The Excitatory Pathways of the ITD Processing Circuit -- 5.1.2 Sources of Inhibition -- 5.2 Embryonic Origins and Development of SON Innervation -- 5.3 Inhibitory Synaptic Physiology: Slow, Depolarizing, and Potent -- 5.3.1 GABAergic Input to NM and NL Is Depolarizing -- 5.3.2 An Unexpected Role for Glycine in the Avian Auditory Brainstem -- 5.3.3 A Role for Phase-Locked Inhibition in Birds? -- 5.4 Binaural Processing in Balance: The SON Circuit from a Systems View -- 5.5 Summary -- References -- Chapter 6: Tuning Neuronal Potassium Channels to the Auditory Environment -- 6.1 Introduction -- 6.2 What Is So Special About Kv3 Potassium Channels? -- 6.3 Brainstem Circuits Underlying Localization of Sounds Have High Levels of Kv3.1 and Kv3.3 Channels -- 6.3.1 Bushy Cells of the Anteroventral Cochlear Nucleus -- 6.3.2 Principal Neurons of the MNTB -- 6.3.3 Other Auditory Brainstem Nuclei -- 6.4 Too Much Kv3.1 Current Produces Errors in Timing -- 6.5 The Properties of Brainstem Neurons Are Plastic -- 6.5.1 Casein Kinase 2 Adjusts the Voltage Dependence of Kv3.1 Current in MNTB Neurons -- 6.5.2 Phosphorylation of Kv3.1 Channels Is Developmentally Regulated -- 6.5.3 Phosphorylation of Kv3.3 Channel Subunits -- 6.6 Long-Term Modulation of Kv3.1 Currents in MNTB Neurons -- 6.6.1 Activity Regulates the Tonotopic Gradient of Kv3.1 Channels -- 6.6.2 Rapid Synthesis of Kv3.1 Channels in Response to Auditory Stimulation Is Regulated by the Fragile X Mental Retardation Protein -- 6.6.3 Regulation of Kv3.1 Channels by Changes in Transcription -- 6.7 Changes in the Tonotopic Gradient of Kv3 Channels Contribute to the Processing of Auditory Information. , 6.8 Unresolved Questions About Channel Modulation in Auditory Neurons -- 6.8.1 Is Channel Modulation Local or Global? -- 6.8.2 Can Accuracy of Transmission Be Altered by Pharmacological Agents? -- 6.9 How Is Modulation of Kv3 Channels Coordinated with Changes in Other Potassium Channels? -- 6.9.1 Kv1 Family Channels -- 6.9.2 Kv2.2 Channels in the Initial Segment -- 6.9.3 Kv11 Channels -- 6.9.4 Sodium-Activated Potassium Channels -- 6.10 Do Changes in Excitability of Brainstem Neurons Contribute to Auditory Learning? -- 6.11 Summary -- References -- Chapter 7: Ontogeny of Human Auditory System Function -- 7.1 Introduction -- 7.2 Development of Conductive Elements -- 7.2.1 External Ear -- 7.2.2 Middle Ear -- 7.2.3 Influences on Auditory Function -- 7.2.3.1 Absolute Sensitivity -- 7.2.3.2 Spatial Hearing -- 7.3 Differentiation of the Human Inner Ear -- 7.3.1 Morphology -- 7.3.2 Physiology -- 7.3.2.1 Otoacoustic Emissions -- 7.3.2.2 Evoked Neural Responses -- 7.3.2.3 Behavioral Responses -- 7.3.3 Development of the Place Principle -- 7.4 Development of Neural Response Properties -- 7.4.1 Frequency Resolution -- 7.4.2 Intensity Representation -- 7.4.2.1 Absolute Sensitivity -- 7.4.2.2 Intensity Discrimination -- 7.4.2.3 Loudness -- 7.4.3 Timbre and Spectral Shape Discrimination -- 7.4.4 Temporal Processing -- 7.4.4.1 Temporal Resolution -- 7.4.4.2 Pitch -- 7.4.4.3 Binaural Hearing -- 7.4.5 Auditory Scene Analysis -- 7.5 Afferent Influences on Auditory System Ontogeny -- 7.5.1 Effects of Exposure to Speech -- 7.5.2 Congenital Hearing Loss Treated with Cochlear Implants -- 7.6 Summary -- References -- Chapter 8: Early Experience and Auditory Development in Songbirds -- 8.1 Introduction -- 8.2 Song Behavior -- 8.3 Basic Hearing -- 8.4 Early Song Experience and Behavior -- 8.4.1 Song Production -- 8.4.2 Song Perception. , 8.5 Early Experience and Auditory Coding -- 8.5.1 Auditory Midbrain -- 8.5.1.1 Auditory Midbrain Function -- 8.5.1.2 Early Experience and Auditory Midbrain Function -- 8.5.2 Auditory Cortex -- 8.5.2.1 Auditory Cortex Organization -- 8.5.2.2 Primary Auditory Cortex -- 8.5.2.3 Early Experience and Primary Auditory Cortex Function -- 8.5.2.4 Secondary Cortex -- 8.5.2.5 Early Experience and Secondary Cortex Function -- 8.6 Summary -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Neurosciences ; Otorhinolaryngology ; Auditory Perception physiology ; Sensation physiology ; Perception physiology
    Description / Table of Contents: Preface -- Visual Influence on Auditory Perception -- Cue Combination Within a Bayesian Framework -- Toward a Model of Auditory-Visual Speech Intelligibility -- An Object-Based Interpretation of Audiovisual Processing -- Hearing in a “Moving” Visual World: Coordinate Transformations Along the Auditory Pathway -- Multisensory Processing in the Auditory Cortex -- Audiovisual Integration in the Primate Prefrontal Cortex -- Using Multisensory Integration to Understand the Human Auditory Cortex -- Combining Voice and Face Content in the Primate Temporal Lobe -- Neural Network Dynamics and Audiovisual Integration -- Cross-Modal Learning in the Auditory System -- Multisensory Processing Differences in Individuals with Autism Spectrum Disorder
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XVI, 272 p. 70 illus., 49 illus. in color)
    ISBN: 9783030104610
    Series Statement: Springer Handbook of Auditory Research 68
    RVK:
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Neurosciences.
    Description / Table of Contents: 1. The Auditory Cognitive Neuroscience of Speech Perception in Context -- 2. Subcortical Processing of Speech Sounds -- 3. Cortical Representation of Speech Sounds: Insights from Intracranial Electrophysiology -- 4. A Parsimonious Look at Neural Oscillations in Speech Perception -- 5. Extracting Language Content From Speech Sounds: The Information Theoretic Approach -- 6. Speech Perception under Adverse Listening Conditions -- 7. Adaptive Plasticity in Perceiving Speech Sounds -- 8. Development of Speech Perception -- 9. Interactions Between Audition and Cognition in Hearing Loss and Aging.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XVI, 252 p. 33 illus., 29 illus. in color.)
    Edition: 1st ed. 2022.
    ISBN: 9783030815424
    Series Statement: Springer Handbook of Auditory Research 74
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Hair cells-Regeneration. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (242 pages)
    Edition: 1st ed.
    ISBN: 9783031206610
    Series Statement: Springer Handbook of Auditory Research Series ; v.75
    DDC: 573.89
    Language: English
    Note: Intro -- The Acoustical Society of America -- Series Preface -- Preface 1992 -- Volume Preface -- Contents -- Contributors -- Chapter 1: Sensory Regeneration in the Inner Ear: History, Strategies, and Prospects -- 1.1 Introduction -- 1.2 Historical Overview of Otic Regeneration -- 1.2.1 Postnatal Generation of Sensory Receptors in Vertebrates -- 1.2.2 Postnatal Addition of Hair Cells in Cold-Blooded Vertebrates -- 1.2.3 Sensory Regeneration in the Avian Inner Ear -- 1.3 Overview of Contents -- 1.4 Conclusions -- References -- Chapter 2: Nonmammalian Hair Cell Regeneration: Cellular Mechanisms of Morphological and Functional Recovery -- 2.1 Introduction -- 2.2 Nonmammalian Hair Cell Regeneration: An Overview -- 2.3 Supporting Cell Populations and Their Functions During Regeneration -- 2.3.1 Identities and Locations of Hair Cell Progenitors in Fish -- 2.3.2 The Role of Peripheral Supporting Cells in Fish -- 2.3.3 Supporting Cell Diversity in Birds -- 2.4 Approaches to Define New Molecular Regulators Using Nonmammals -- 2.4.1 Transcriptional Profiling -- 2.4.2 Genetic and Molecular Screening -- 2.5 Molecular Regulation of Supporting Cells -- 2.5.1 Transcription Factors Regulate Hair Cell Regeneration in Nonmammals -- 2.5.2 Cell-Cell Signaling Molecules That Regulate Hair Cell Regeneration in Birds and Fish -- 2.5.2.1 Notch Signaling -- 2.5.2.2 Wnt Signaling -- 2.5.2.3 Other Signaling Pathways -- 2.5.3 Epigenetic Mechanisms Controlling Nonmammalian Hair Cell Regeneration -- 2.6 Conclusion -- References -- Chapter 3: Cell Junctions and the Mechanics of Hair Cell Regeneration -- 3.1 Introduction -- 3.2 Shape Change Controls Proliferation of Supporting Cells -- 3.3 Actomyosin Contractility at Apical Junctions Accelerates Wound Closure in the Lesioned Vestibular Epithelium. , 3.4 Maturational Reinforcement of Adherens Junctions Coincides with Age-Related Declines in the Plasticity of Mammalian Supporting Cells -- 3.4.1 The Unique Circumferential F-actin Bands in Mammalian Supporting Cells -- 3.4.2 Potential Mechanical Influence of the Thick F-actin Bands that Develop in Mammalian Supporting Cells -- 3.4.3 Structure and Regulation of the Circumferential F-actin Bands in Supporting Cells -- 3.4.3.1 Sarcomeric Actomyosin Network at Cochlear Apical Junctions -- 3.4.3.2 Regulation of the Circumferential F-actin Bands by Rho GTPases -- 3.5 E-cadherin Accumulates at Supporting Cell Junctions in the Mammalian Vestibular Epithelium -- 3.5.1 Hypothesized Role for N-cadherin in Limiting Supporting Cell Proliferation -- 3.5.2 A Special Case: Apical Junctions in the Anolis Lizard -- 3.6 Regulation and Perturbation of Apical Junctions in Mammalian Supporting Cells -- 3.6.1 Potential Interaction of Notch Signaling and E-cadherin Adhesion -- 3.7 Intracellular Signaling Downstream of Mechanical Signals -- 3.7.1 YAP/TAZ and the Hippo Pathway -- 3.7.1.1 YAP-TEAD Regulate Cell Cycle Arrest and Size Control in Hair Cell Epithelia -- 3.7.1.2 YAP-TEAD Signaling in Repair and Regeneration -- 3.7.2 Canonical Wnt Signaling -- 3.8 Supporting Cell-Extracellular Matrix Interactions -- 3.9 Summary -- 3.9.1 A Hypothetical Model for Mechanical Control of Hair Cell Replacement -- 3.9.2 Outstanding Questions and Opportunities -- 3.10 Conclusions -- References -- Chapter 4: Mammalian Hair Cell Regeneration -- 4.1 Introduction -- 4.2 Structural and Developmental Considerations -- 4.2.1 Structure of the Mammalian Vestibular Sensory Epithelia -- 4.2.2 Development of the Vestibular Sensory Epithelia -- 4.2.3 Structure of the Mammalian Auditory Epithelium, the Organ of Corti -- 4.2.3.1 Hair Cell Types -- 4.2.3.2 Supporting Cells. , 4.2.3.3 Features of Organ of Corti Development -- 4.3 Hair Cell Generation and Regeneration in the Immature Inner Ear -- 4.3.1 Generation of Supernumerary Hair Cells -- 4.3.2 Hair Cell Regeneration in the Immature Inner Ear -- 4.3.3 Stem Cells in the Sensory Epithelia -- 4.4 Hair Cell Generation and Regeneration in the Mature Vestibular Sensory Epithelia -- 4.4.1 Characteristics of Spontaneous Regeneration in Adult Mammalian Utricles -- 4.4.2 Origin of Regenerated Hair Cells -- 4.4.3 Functionality of Regenerated Vestibular Hair Cells -- 4.5 Enhancing Hair Cell Regeneration by Phenotypic Conversion in Mature Animals -- 4.5.1 Vestibular Sensory Epithelia -- 4.5.1.1 Notch Pathway Inhibition -- 4.5.1.2 Overexpression of Atoh1 -- 4.5.2 Inducing Hair Cell Regeneration in the Mature Organ of Corti in Vivo -- 4.5.2.1 Overexpression of Atoh1 -- 4.5.2.2 Notch Pathway Inhibition -- 4.5.3 Additional Factors to Promote Differentiation of Regenerated Hair Cells -- 4.5.4 Clinical Trials -- 4.6 Regeneration of Vestibular Hair Cells: Summary -- 4.7 Cochlear Cellular Pathology and Challenges to Hair Cell Regeneration and Recovery of Auditory Function -- References -- Chapter 5: Specification and Plasticity of Mammalian Cochlear Hair Cell Progenitors -- 5.1 Introduction -- 5.2 Induction of the Inner Ear and the Development of Prosensory Patches -- 5.3 Regulation and Function of the Atoh1 Transcription Factor During HC Development -- 5.4 Promotion of Supporting Cell Fate Through Notch-Mediated Lateral Inhibition from Hair Cells -- 5.5 Regulation of Supporting Cell Fate Decisions: Extracellular Signals and Intracellular Transcription Factors -- 5.6 Toward Hair Cell Regeneration: Lessons from Non-mammalian Models and Neonatal Mice -- 5.7 Enhancing Mammalian Hair Cell Regeneration: Reprogramming of Supporting Cells into Hair Cells. , 5.8 Epigenetic Regulation of Gene Expression in the Cochlea -- 5.9 Summary -- References -- Chapter 6: Inner Ear Cells from Stem Cells: A Path Towards Inner Ear Cell Regeneration -- 6.1 Introduction -- 6.1.1 Pluripotent Stem Cells -- 6.2 Two-Dimensional Culture Systems -- 6.2.1 Inner Ear Replacement Parts and Hair Cells from Scratch -- 6.2.2 Hair Cell-Like Cells from Pluripotent Stem Cells -- 6.2.3 Limitations of Two-Dimensional Culture Systems -- 6.3 Three-Dimensional Culture and Organoids -- 6.3.1 Derivation of Inner Ear Organoids -- 6.3.2 Limitations of Three-Dimensional Culture Systems -- 6.4 Stem Cells in the Adult Inner Ear -- 6.4.1 Stem Cells Are the Source of the Strong Regenerative Capacity of the Avian Inner Ear -- 6.4.2 Stem Cells in the Inner Ear of Adult Rodents Are Restricted to the Vestibular System -- 6.5 Stem Cells in the Neonatal Rodent Cochlea -- 6.5.1 Supporting Cells of the Neonatal Organ of Corti Display Stem Cell-Like Capacity -- 6.5.2 Proliferation of Dissociated Neonatal Organ of Corti Supporting Cells Can be Manipulated with Growth Factors and Small Molecules -- 6.6 Emerging New Methods Towards Hair Cell Regeneration -- 6.6.1 CRISPR Genome Editing to Enhance Stem Cell Applications? -- 6.6.2 Supporting Cell Reprogramming -- 6.7 Conclusion -- References -- Chapter 7: Spiral Ganglion Neuron Regeneration in the Cochlea: Regeneration of Synapses, Axons, and Cells -- 7.1 Introduction to Spiral Ganglion Neurons -- 7.1.1 Peripheral Connections of Spiral Ganglion Neurons -- 7.1.2 Glia and Myelination -- 7.1.3 Central Connections of SGNs -- 7.1.4 Neurotrophic Factors -- 7.2 Synaptopathy and Synapse Regeneration -- 7.2.1 Primary Degeneration -- 7.2.2 Secondary SGN Degeneration After Hair Cell Loss -- 7.3 Regeneration of SGN Axons and Guidance of Their Growth -- 7.3.1 Stimulation of Growth by Neurotrophic Factors. , 7.3.2 Intracellular Signaling for Neurite Growth/Retraction -- 7.3.3 Directional Guidance by Neurotrophic Factors -- 7.3.4 Directional Guidance by Substrate Pattern/Materials -- 7.4 Cochlear Implants Present a Model for SGN Regeneration -- 7.4.1 Cochlear Implants Depend on SGN Health -- 7.4.2 Cochlear Trauma and Inflammation Likely Reduce SGN Health and CI Performance -- 7.5 Regeneration of SGNs from Stem Cells -- 7.5.1 Assessments of Success -- References -- Chapter 8: Genetic and Epigenetic Strategies for Promoting Hair Cell Regeneration in the Mature Mammalian Inner Ear -- 8.1 Introduction -- 8.2 Mouse Models for Altering Gene Expression -- 8.2.1 Cre/lox Technology -- 8.2.1.1 Cell Type-Specific and Temporal Control of Recombination -- 8.2.1.2 Generation of Cre and CreERT Mouse Lines -- 8.2.1.3 Characterizing Cre/CreERT Expression -- 8.2.1.4 Interpreting Cre/CreERT Reporter Expression -- 8.2.1.5 Cre/CreERT Efficiency -- 8.2.1.6 Caveats for Cre/CreERT Studies -- 8.2.2 CreERT Alleles Expressed in Supporting Cells -- 8.2.2.1 CreERT Alleles for Adult Auditory Supporting Cells -- 8.2.2.2 CreERT Alleles for Adult Vestibular Supporting Cells -- 8.2.3 Tetracycline-Responsive Gene Regulation -- 8.2.4 CRISPR/Cas Approaches -- 8.2.4.1 Generation of Knockout Mice -- 8.2.4.2 Advantages Over Conventional Mouse Mutagenesis -- 8.2.4.3 Genetic Knock-In Using CRISPR/Cas -- 8.2.4.4 Cas9-Expressing Mouse Lines -- 8.2.4.5 Reducing Off-Target Effects -- 8.2.4.6 DNA Base Editing with Dead Cas9 -- 8.3 Targeting Epigenetic Processes for Hair Cell Regeneration -- 8.4 Virus-Mediated Gene Transfer in Adult Supporting Cells -- 8.4.1 Introduction to Adeno-Associated Virus -- 8.4.1.1 AAV Infection and Tropism -- 8.4.1.2 Recombinant Adeno-Associated Viral Vectors -- Capsid Discovery to Achieve Novel Transduction -- 8.4.1.3 Packaging Capacity. , 8.4.2 Gain of Function in Supporting Cells.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Neurosciences. ; Otorhinolaryngology.
    Description / Table of Contents: Sensory Regeneration in the Inner Ear: History, Strategies and Prospects -- Non-mammalian Hair Cell Regeneration: Cellular Mechanisms of Morphological and Functional Recovery -- Cell Junctions and the Mechanics of Hair Cell Regeneration -- Mammalian Hair Cell Regeneration -- Specification and Plasticity of Mammalian Cochlear Hair Cell Progenitors -- Inner Ear Cells from Stem Cells – a Path Towards Inner Ear Cell Regeneration -- Spiral ganglion neuron regeneration in the cochlea: regeneration of synapses, axons and cells -- Genetic and Epigenetic Strategies for Promoting Hair Cell Regeneration in the Mature Mammalian Inner Ear.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XVI, 229 p. 44 illus., 35 illus. in color.)
    Edition: 1st ed. 2023.
    ISBN: 9783031206610
    Series Statement: Springer Handbook of Auditory Research 75
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 217 (2014): 2078-2088, doi:10.1242/​jeb.093831.
    Description: We investigated the roles of the swim bladder and the lateral line system in sound localization behavior by the plainfin midshipman fish (Porichthys notatus). Reproductive female midshipman underwent either surgical deflation of the swim bladder or cryoablation of the lateral line and were then tested in a monopolar sound source localization task. Fish with nominally “deflated” swim bladders performed similar to sham-deflated controls; however, post-experiment evaluation of swim bladder deflation revealed that a majority of “deflated” fish (88%, 7 of the 8 fish) that exhibited positive phonotaxis had partially inflated swim bladders. In total, 95% (21/22) of fish that localized the source had at least partially inflated swim- bladders, indicating that pressure reception is likely required for sound source localization. In lateral line experiments, no difference was observed in the proportion of females exhibiting positive phonotaxis with ablated- (37%) versus sham-ablated (47%) lateral line systems. These data suggest that the lateral line system is likely not required for sound source localization, although this system may be important for fine- tuning the approach to the sound source. We found that midshipman can solve the 180° ambiguity of source direction in the shallow water of our test tank, which is similar to their nesting environment. We also found that the potential directional cues (phase relationship between pressure and particle motion) in shallow water differs from a theoretical free-field. Therefore, the general question of how fish use acoustic pressure cues to solve the 180° ambiguity of source direction from the particle motion vector remains unresolved.
    Description: This collaborative research was supported by the National Science Foundation (IOS-0642214 to J.A.S. and R.R.F).
    Description: 2015-03-27
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...