GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Biology-Mathematical models. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (332 pages)
    Edition: 1st ed.
    ISBN: 9783319426792
    Series Statement: Lecture Notes in Mathematics Series ; v.2167
    DDC: 570.151
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- 1 Cell-Based, Continuum and Hybrid Models of Tissue Dynamics -- 1.1 Introduction -- 1.1.1 Dictyostelium Discoideum as a Model System -- 1.2 Actin Dynamics -- 1.2.1 The Basic Biochemistry -- 1.2.2 Regulation of Polymerization, Filament Severing and Branching -- 1.3 A Mathematical Model for In Vitro Filament Dynamics -- 1.3.1 The Initial Evolution of the Distribution -- 1.3.2 The Long-Time Evolution of the Distribution -- 1.4 Stochastic Analysis of Actin Dynamics -- 1.4.1 The Mathematical Description of Reaction Networks -- 1.4.2 The Stochastic Simulation Algorithm -- 1.4.3 Actin Wave Dynamics in Dictyostelium Discoideum -- 1.5 Signal Transduction, Direction Sensing and Relay -- 1.5.1 The Model for Signal Transduction and Relay -- 1.5.2 The Dynamics Under Imposed and Self-Generated Stimuli -- 1.5.3 The Reaction-Diffusion Equations for Early Aggregation -- 1.6 Multicellular Problems -- 1.6.1 The Mechanics of a Single Cell -- 1.6.2 The Multicell Problem -- 1.6.3 Who Does the Work in the Slug? -- 1.7 Conclusion -- Appendix: Singular Perturbation Reduction -- 1.8 Glossary -- References -- 2 The Diffusion Limit of Transport Equations in Biology -- 2.1 Introduction to Movement Models -- 2.1.1 Measurements -- 2.1.2 Random Walk on a Grid -- 2.1.3 A Continuous Random Walk -- 2.1.4 Outline of This Manuscript -- 2.2 Correlated Random Walk in One Dimension -- 2.2.1 The Goldstein-Kac Model in 1-D -- 2.2.2 Boundary Conditions -- 2.2.3 Abstract Formulation -- 2.2.4 Explicit Solution Using Bessel Functions -- 2.2.5 Correlated Random Walk Models for Chemotaxis -- 2.2.6 Reaction Random Walk Systems -- 2.2.7 Correlated Random Walk Models for Swarming -- 2.3 Transport Equations -- 2.3.1 The Mathematical Set-Up -- 2.3.2 The Turning Operator -- 2.3.3 Normal Operators -- 2.3.4 Important Examples. , 2.3.4.1 Example 1: Pearson Walk -- 2.3.4.2 Example 2: Movement on Fibre Networks -- 2.3.4.3 Example 3 (Homework) Symmetric Kernels -- 2.3.5 Main Spectral Result -- 2.3.6 Existence and Uniqueness -- 2.4 The Formal Diffusion Limit -- 2.4.1 Scalings -- 2.4.2 The Formal Diffusion Limit -- 2.4.2.1 Example: Pearson Walk -- 2.4.3 Ellipticity of the Diffusion Tensor -- 2.4.4 Graphical Representations of the Diffusion Tensor -- 2.4.4.1 An Anisotropic Random Walk -- 2.4.5 Anisotropic vs. Isotropic Diffusion -- 2.4.5.1 Examples -- 2.4.6 Chemotaxis -- 2.4.6.1 Other Cases -- 2.4.7 Persistence -- 2.4.7.1 Example -- 2.4.8 Summary and Conclusions -- 2.5 Further Reading for Transport Equations in Oriented Habitats -- References -- 3 Mathematical Models of the Interaction of Cells and Cell Aggregates with the Extracellular Matrix -- 3.1 Biological Relevance of Cell-ECM Interaction -- 3.2 A Model of Cell-ECM Adhesion -- 3.2.1 Evolution of the Distribution of Adhesion Bonds -- 3.2.2 The Quasi-Stationary Limit -- 3.2.3 Examples of Interaction Forces -- 3.3 Modelling the Influence of the Nucleus -- 3.3.1 Modelling the Deformation of the Elastic Nucleus -- 3.3.2 Modelling the Cell Traction Force -- 3.3.3 A Penetration Criterium from an Energy Balance -- 3.4 Cell Migration by Cellular Potts Models -- 3.4.1 Compartmentalized Cellular Potts Models -- 3.4.2 Cell Migration in a 3D Microchannel Device -- 3.4.3 Cell Migration in Two-Dimensional Matrix Microtracks -- 3.4.3.1 MMP-Independent Cell Migration -- 3.4.3.2 MMP-Dependent Cell Migration -- 3.4.4 Cell Migration in a Three-Dimensional Fibrous Scaffold -- 3.5 Multicomponent and Multiphase Modelling -- 3.5.1 Mass Balance Equations -- 3.5.2 Force Balance Equations -- 3.5.3 Model Reduction for the Saturated Case -- 3.6 Linking Multiphase Models to the Result of Microscopic Models -- 3.6.1 Cell Motility. , 3.6.2 Compartmentalization and Invasion -- 3.6.3 A Two-Population Case -- 3.6.4 MMP-Induced Invasion -- 3.7 Chemotaxis as an Active Stress -- 3.8 Perspectives on Mechanosensing and Mechanotransduction -- References -- 4 Mathematical Modeling of Morphogenesis in Living Materials -- 4.1 Introduction -- 4.2 An Historical Overview of Morphogenetic Theories -- 4.2.1 Epigenesis Versus Pre-formationism: From Ancient Times to the Advent of Microscopy -- 4.2.2 The Birth of Modern Embryology: Evolutionary Theories and Mechanical Causation -- 4.2.3 The Contemporary Approaches to Morphogenesis -- 4.2.3.1 The First Mathematical Approach on Growth and Form -- 4.2.3.2 The Chemical Bases of Morphogenesis -- 4.2.3.3 The New Course of Genetics and the Return of an Ancient Dichotomy -- 4.2.4 The Open Quest for the Chemo-Mechanical Cues of Morphogenesis -- 4.3 A Continuous Chemo-Mechanical Theory of Morphogenesis -- 4.3.1 Basic Kinematic Notions -- 4.3.1.1 Balance of Mass -- 4.3.2 Balance of Linear and Angular Momentum -- 4.3.3 Balance of Internal Energy and Entropy Inequality -- 4.3.4 Balance Laws for Interfacial Morphogenetic Processes -- 4.4 Free-Boundary Morphogenesis for Fluid-Like Living Matter -- 4.4.1 Definition of the Chemotactic Model in a Hele Shaw Cell -- 4.4.2 Dimensionless Form of the Governing Equations -- 4.4.3 Traveling Wave Solution -- 4.4.4 Linear Stability Analysis -- 4.4.5 Pattern Formation in the Nonlinear Regime -- 4.5 Growth, Remodelling and Morphogenesis for Soft Elastic Matter -- 4.5.1 An Interpretation of Morphogenesis in Solids Using the Theory of Configurational Forces -- 4.5.2 Mathematical Theory of Volumetric Growth in Soft Solids -- 4.5.3 Constitutive Assumptions and Evolution Laws for Growth and Remodelling -- 4.5.4 Morpho-Elasticity of Growing Living Matter -- 4.5.4.1 Basic Solution of the Quasi-Static Elastic Problem. , 4.5.4.2 Method of Incremental Deformations Superposed on Finite Deformations -- 4.5.4.3 Summary of the Incremental Boundary Value Problem -- 4.6 Pattern Formation in a Growing Bilayer Under Lateral Constraint -- 4.6.1 Definition of the Model and Basic Morpho-Elastic Solution -- 4.6.2 Linear Stability Analysis -- 4.6.2.1 Solution Using an Elastic Stream Functions -- 4.6.2.2 Solution Using the Stroh Formalism -- 4.6.2.3 Theoretical Results: Critical Growth Threshold and Pattern Selection -- 4.6.2.4 Numerical Results: Post-buckling Behavior -- 4.7 Concluding Remarks -- References -- 5 Multiscale Computational Modelling and Analysis of Cancer Invasion -- 5.1 Introduction -- 5.2 A Basic Tissue-Scale Cancer Invasion Model -- 5.2.1 Model Formulation -- 5.2.2 Specific Choices for Simulations in Two Spatial Dimensions -- 5.2.3 The Non-local Model for a Single Cancer Cell Population -- 5.2.3.1 Constant Cell-Cell Adhesion Coefficient -- 5.2.3.2 Time-Dependent Cell-Cell Adhesion Coefficient -- 5.2.4 The Non-local Model with Two Cancer Cell Sub-Populations -- 5.2.4.1 The Effect of ECM Remodelling and the Influence of the Cross-Adhesion Coefficient -- 5.3 Macroscopic Spatio-Temporal-Structural Modelling Approach with Application to the uPA System -- 5.3.1 General Spatio-Temporal-Structured Cell Population Modelling Framework -- 5.3.2 Cell Population Dynamics -- 5.3.2.1 Source -- 5.3.2.2 Spatial Flux -- 5.3.2.3 Structural Flux -- 5.3.3 Extracellular Matrix -- 5.3.4 Molecular Species -- 5.3.5 Summary of the General Spatio-Temporal-Structural Model for Cell Migration -- 5.3.6 Application of the Structured-Population Approach to a Model of Cancer Invasion Based on the uPA System -- 5.4 Multiscale Moving Boundary Modelling Framework for Tumour Invasion -- 5.4.1 Modelling Framework Set-Up: The Macroscopic Dynamics and Top-Down Link. , 5.4.2 Exploring the MDEs Micro-Dynamics -- 5.4.2.1 The uPA Micro-Dynamics on Each Micro-Domain in Hε -- 5.4.3 The Macroscale Boundary Movement Induced by the Invasive Edge MDE Micro-Dynamics -- 5.4.4 Multiscale Computational Simulation Results -- 5.5 Concluding Remarks -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Biomathematics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (217 pages)
    Edition: 1st ed.
    ISBN: 9783030451974
    Series Statement: Lecture Notes in Mathematics Series ; v.2260
    DDC: 571.43015118
    Language: English
    Note: Intro -- Preface -- Abstract -- Contents -- 1 Cell Motility and Locomotion by Shape Control -- 1.1 Introduction -- 1.2 Swimming at Low Reynolds Numbers -- 1.3 Locomotion Principles and Minimal Swimmers -- 1.3.1 Looping in the Space of Shapes: No Looping? No Party! -- 1.3.2 Minimal Swimmers With or Without Directional Control -- 1.3.3 Steering by Modulation of the Actuation Speed -- 1.3.4 Swimming by Lateral Undulations: Optimality of Traveling Waves of Bending -- 1.4 Biological Swimmers -- 1.4.1 Chlamydomonas' Breaststroke -- 1.4.2 Sperm Cells and Flagellar Beat -- 1.5 Euglena Gracilis: A Case Study in Biophysics and a Journey from Biology to Technology -- 1.5.1 Metaboly and Mechanisms for Shape Change, Embodied Intelligence -- 1.5.2 Flagellar Swimming, Helical Trajectories and a Principle for Self-Assembly -- 1.6 Shape Control and Gaussian Morphing -- 1.6.1 Controlling the Shape of Surfaces by Prescribing Their Metric -- 1.6.2 Axisymmetric Surfaces -- 1.6.3 Cylinders from Cylinders -- 1.6.4 Axisymmetric Surfaces with Non-constant Metric -- 1.6.5 Protruding Necks and Localized Bulges -- 1.7 Discussion and Outlook -- References -- 2 Models of Cell Motion and Tissue Growth -- 2.1 Introduction -- 2.2 Bacterial Movement by Run and Tumble -- 2.2.1 Modeling Run and Tumble -- 2.2.2 Existence of Solutions -- 2.2.3 Derivation of the Patlak/Keller-Segel System -- 2.2.4 Modulation Along the Path -- 2.3 Macroscopic Models of Chemotactic Movement -- 2.3.1 Elementary Properties -- 2.3.2 Blow-Up in the Keller-Segel System -- 2.3.3 Keller-Segel System with Prevention of Overcrowding -- 2.3.4 The Flux Limited Keller-Segel System -- 2.3.5 Traveling Bands -- 2.3.6 Instabilities -- 2.4 Compressible Models of Tissue Growth -- 2.4.1 A Simple Model with a Single Type of Cells -- 2.4.1.1 Supersolution with Bounded Support. , 2.4.1.2 Existence of Solutions and a Priori Bounds -- 2.4.1.3 A Variant of Aronson-Bénilan Estimate -- 2.4.2 Single Cell Type Population Model with Nutrient -- 2.4.3 Models with Two Cell Types -- 2.4.4 Two Cell Type Model with Different Mobilities -- 2.4.5 Surface Tension and the Degenerate Cahn-Hilliard Model -- 2.5 Incompressible Models of Tissue Growth -- 2.5.1 Single Cell Type Free Boundary Problem -- 2.5.2 Single Cell Type Model with Nutrient and Free Boundary -- 2.5.3 Two Cell Types Incompressible Model -- 2.5.4 Multiphase Models -- 2.5.4.1 The One Phase Closure -- 2.5.4.2 The Darcy/Stokes Closure -- 2.5.4.3 The Single Pressure Closure -- 2.6 The Incompressible Limit and Stiff Pressure Law -- 2.6.1 Single Cell Type Model, Incompressible Limit -- 2.6.1.1 Weak Formulation of the Hele-Shaw Problem -- 2.6.1.2 The Complementary Relation -- 2.6.1.3 From the Weak Formulation to the Free Boundary Statement -- 2.6.2 Single Cell Type with Nutrient, Incompressible Limit -- 2.6.3 Open Problems -- References -- 3 Segregated Algorithms for the Numerical Simulation of Cardiac Electromechanics in the Left Human Ventricle -- 3.1 Introduction -- 3.2 Mathematical Models -- 3.2.1 Ionic Model and Monodomain Equation -- 3.2.2 Mechanical Activation -- 3.2.3 Passive and Active Mechanics -- 3.2.3.1 Prestress -- 3.2.4 Cardiac Cycle -- 3.3 Space and Time Discretizations -- 3.3.1 Space Discretization -- 3.3.2 Time Discretization -- 3.3.2.1 Discretization of the 0D Fluid Model -- 3.4 Numerical Coupling: Segregated Strategies -- 3.4.1 Fully Monolithic Strategy (IIEIAIMI) -- 3.4.2 Partially Segregated Strategy (IIEIAI)-(MI) -- 3.4.3 Partially Segregated Strategy (ISIESIASI)-(MI) -- 3.4.4 Fully Segregated Strategy (ISI)-(ESI)-(ASI)-(MI) -- 3.5 Numerical Results -- 3.5.1 Preprocessing -- 3.5.2 Benchmark Problem with Idealized Geometry. , 3.5.3 Subject-Specific LV: The Full Heartbeat -- 3.6 Conclusions -- References -- 4 Power-Stroke-Driven Muscle Contraction -- 4.1 Introduction -- 4.2 General Ratchet Model -- 4.3 X-Tilted Ratchet -- 4.3.1 Typical Cycles -- 4.3.2 Force-Velocity Relations and Stochastic Energetics -- 4.4 Y-Tilted Ratchet -- 4.4.1 Typical Cycles -- 4.4.2 Force-Velocity Relations and Stochastic Energetics -- 4.5 XY-Tilted Ratchet -- 4.5.1 Motor Cycles -- 4.5.2 Force-Velocity Relations and Stochastic Energetics -- 4.6 Comparison of the Three Models -- 4.6.1 Soft Device -- 4.6.2 Hard Device -- 4.6.3 Stochastic Energetics -- 4.7 XY-Tilted Ratchet with a Steric Feedback -- 4.7.1 The Model -- 4.7.2 Hysteretic Coupling -- 4.7.3 Non-potential Models -- 4.8 Active Rigidity -- 4.8.1 Macroscopic Problem -- 4.8.2 Mean Field Model -- 4.8.3 Non-dimensionalization -- 4.8.4 Phase Diagrams -- 4.8.5 Zero Temperature Limit -- 4.9 Conclusions -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...