GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Type of Medium: Book
    Pages: 51 S , graph. Darst
    ISBN: 0643036539
    Series Statement: Report / CSIRO Marine Laboratories 169
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Understanding sea-level rise and variability, Chichester [u.a.] : Wiley-Blackwell, 2010, (2010), Seite 143-176, 1444334522
    In: 1444334514
    In: 9781444334524
    In: 9781444334517
    In: year:2010
    In: pages:143-176
    Type of Medium: Article
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of inherited metabolic disease 7 (1984), S. 12-14 
    ISSN: 1573-2665
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract A variety of phagocytic cell and lymphocyte assays were employed to evaluate the immune status of four patients with methylmalonicaciduria. One patient had a depressed absolute granulocyte count and two patients had depressed neutrophil and monocyte chemotactic responses. All subjects had normal neutrophil phagocytic and bactericidal activities. One patient had a decreased T-cell number; blastogenic responses to phytohaemagglutinin and pokeweed mitogen were normal in all subjects. B lymphocyte measurements were variably abnormal; two children had decreased B-cell numbers; two had marginally decreased IgG levels; a third had an undetectable rubella titre; and two had elevated serum IgE concentrations.In vitro exposure of normal cells to methylmalonic acid concentrations up to 50mg/100 ml did not affect chemotactic or lymphoproliferative responses. In conclusion, although B-cell function may be affected, no consistent abnormality of lymphocyte or phagocytic cell functions could be attributed to the metabolic disorder.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  EPIC3, in: J.T Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. Van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.): Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel, pp. 639-694
    Publication Date: 2018-08-10
    Description: This chapter assesses the current state of knowledge of the rate of change of global-averaged and regional sea-level in relation to climate change. We focus on the 20th and 21st centuries.However, because of the slow response to past conditions of the oceans and ice sheets and the consequent land movements, we consider changes in sea level prior to the historical record, andwe also look over a thousand years into the future.Past changes in sea levelFrom recent analyses, our conclusions are as follows:since the Last Glacial Maximum about 20 000 years ago, sea level has risen by over 120 m at locations far from present and former ice sheets, as a result of loss of mass from these ice sheets. There was a rapid rise between 15 000 and 6000 years ago at an average rate of 10 mm/yr.based on geological data, global average sea level may have risen at an average rate of 0.5 mm/yr over the last 6000 years and at an average rate of 0.1 to 0.2 mm/yr over the last 3000 years.vertical land movements are still occurring today as a result of these large transfers of mass from the ice sheets to the ocean.during the last 6000 years, global average sea-level variations on the time scales of a few hundred years and longer are likely to have been less than 0.3 to 0.5 m.based on tide gauge data, the rate of global average sea-level rise during the 20th century is in the range 1.0 to 2.0 mm/yr, with a central value of 1.5 mm/yr (as with other ranges of uncertainty, it is not implied that the central value is the best estimate).based on the few very long tide-gauge records, the average rate of sea-level rise has been larger during the 20th century than the 19th century.no significant acceleration in the rate of sea-level rise during the 20th century has been detected.there is decadal variability in extreme sea levels but no evidence of widespread increases in extremes other than that associated with a change in the mean.Factors affecting present day sea level changeGlobal average sea level is affected by many factors. Our assessment of the most important is as follows.Ocean thermal expansion leads to an increase in ocean volume at constant mass. Observational estimates of about 1 mm/yr over recent decades are similar to values of 0.7 to 1.1 mm/yr obtained from Atmosphere-Ocean General Circulation Models (AOGCMs) over a comparable period. Averaged over the 20th century, AOGCM simulations result in rates of thermal expansion of 0.3 to 0.7 mm/yr.The mass of the ocean, and thus sea level, changes as water is exchanged with glaciers and ice caps. Observational and modelling studies of glaciers and ice-caps indicate a contribution to sea-level rise of 0.2 to 0.4 mm/yr averaged over the 20th century.Climate changes during the 20th century are estimated from modelling studies to have led to contributions of between Ð0.2 and 0.0 mm/yr from Antarctica (the results of increasing precipitation) and 0.0 to 0.1 mm/yr from Greenland (from changes in both precipitation and runoff).Greenland and Antarctica have contributed 0.0 to 0.5 mm/yr over the 20th century as a result of long term adjustment to past climate changes.Changes in terrestrial storage of water over the period 1910 to 1990 are estimated to have contributed from Ð1.1 to +0.4 mm/yr of sea-level rise.The sum of these components indicates a rate of eustatic sea-level rise (corresponding to a change in ocean volume) from 1910 to 1990 ranging from Ð0.8 mm/yr to 2.2 mm/yr, with a central value of 0.7 mm/yr. The upper bound is close to the observational upper bound (2.0 mm/yr), but the central value bound is less than the observational lower bound (1.0 mm/yr), i.e. the sum of components is biased low compared to the observational estimates. The sum of components indicates an acceleration of only 0.2 mm/yr/century, with a range from Ð1.1 to +0.7 mm/yr/century, consistent with observational finding of no acceleration in sea-level rise during the 20th century. The estimated rate of sea-level rise from anthropogenic climate change from 1910 to 1990 (from modelling studies of thermal expansion, glaciers and ice-sheets) ranges from 0.3 to 0.8 mm/yr. It is very likely that 20th century warming has contributed significantly to the observed sea level rise, through thermal expansion of sea water and widespread loss of land ice.Projected sea-level changes from 1990 to 2100Projections of components contributing to sea-level change from 1990 to 2100 (this period is chosen for consistency with the IPCC Second Assessment Report), using a range of AOGCMs following the IS92a scenario (including the direct effect of sulphate aerosol emissions) give:thermal expansion of 0.11 to 0.43 m, accelerating through the 21st century.a glacier contribution of 0.01 to 0.23 m.a Greenland contribution of -0.02 to 0.09 m.an Antarctic contribution of -0.17 to 0.02 m.Including thawing of permafrost, deposition of sediment, and the ongoing contributions from ice sheets as a result of climate change since the Last Glacial Maximum, we obtain a range of global-average sea-level rise from 0.11 to 0.77 m. This range reflects systematic uncertainties in modelling.For the 35 SRES scenarios, we project a sea-level rise of 0.09 to 0.88 m for 1990 to 2100, with a central value of 0.48 m. The central value gives an average rate of 2.2 to 4.4 times the rate over the 20th century. If terrestrial storage continued at its present rates, the projections could be changed by -0.21 to 0.11 m. For an average AOGCM, the SRES scenarios give results which differ by 0.02 m or less for the first half of the 21st century. By 2100, they vary over a range amounting to about 50% of the central value. Beyond the 21st century, sea level rise will depend strongly on the emission scenario.The West Antarctic Ice Sheet (WAIS) has attracted special attention because it contains enough ice to raise sea level by 6 m and because of suggestions that instabilities associated with its being grounded below sea level may result in rapid ice discharge when the surrounding ice shelves are weakened. The range of projections given above makes no allowance for ice-dynamic instability of the WAIS. It is now widely agreed that major loss of grounded ice and accelerated sea-level rise are very unlikely during the 21st century.Our confidence in the regional distribution of sea level change from AOGCMs is low because there is little similarity between models. However, models agree on the qualitative conclusion that the range of regional variation is substantial compared with the global average sea-level rise. Nearly all models project greater than average rise in the Arctic Ocean and less than average rise in the Southern Ocean.Land movements, both isostatic and tectonic, will continue through the 21st century at rates which are unaffected by climate change. It can be expected that by 2100 many regions currently experiencing relative sea-level fall will instead have a rising relative sea level.Extreme high water levels will occur with increasing frequency (i.e. with reducing return period) as a result of mean sea-level rise. Their frequency may be further increased if storms become more frequent or severe as a result of climate change.Longer term changesIf greenhouse gas concentrations were stabilised, sea level would nonetheless continue to rise for hundreds of years. After 500 years, sea-level rise from thermal expansion may have reached only half of its eventual level, which models suggest may lie within ranges of 0.5 to 2.0 m and 1 to 4 m for CO2 levels twice and four times pre-industrial, respectively.Glacier retreat will continue and the loss of a substantial fraction of the total glacier mass is likely. Areas that are currently marginally glaciated are most likely to become ice-free.Ice sheets will continue to react to climate change during the next several thousand years even if the climate is stabilised. Models project that a local annual-average warming of larger than 3°C sustained for millennia would lead to virtually a complete melting of the Greenland ice sheet. For a warming over Greenland of 5.5°C, consistent with mid-range stabilisation scenarios, theGreenland ice sheet contributes about 3 m in 1000 years. For a warming of 8°C, the contribution is about 6 m, the ice sheet being largely eliminated. For smaller warmings, the decay of the ice sheet would be substantially slower.Current ice dynamic models project that the WAIS will contribute no more than 3 mm/yr to sea-level rise over the next thousand years, even if significant changes were to occur in the ice shelves. However, we note that its dynamics are still inadequately understood to make firm projections, especially on the longer time scales.Apart from the possibility of an internal ice dynamic instability, surface melting will affect the long-term viability of the Antarctic ice sheet. For warmings of more than 10°C, simple runoff models predict that an ablation zone would develop on the ice sheet surface. Irreversible disintegration of the WAIS would result because the WAIS cannot retreat to higher ground once its margins are subjected to surface melting and begin to recede. Such a disintegration would take at least a few millennia. Thresholds for total disintegration of the East Antarctic ice sheet by surface melting involve warmings above 20*C, a situation that has not occurred for at least 15 million years and which is far more than predicted by any scenario of climate change currently under consideration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-03-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-06
    Description: An approach to analyze high-end sea level rise is presented to provide a conceptual framework for high-end estimates as a function of time scale, thereby linking robust sea level science with stakeholder needs. Instead of developing and agreeing on a set of high-end sea level rise numbers or using an expert consultation, our effort is focused on the essential task of providing a generic conceptual framework for such discussions and demonstrating its feasibility to address this problem. In contrast, information about high-end sea level rise projections was derived previously either from a likely range emerging from the highest view of emissions in the Intergovernmental Panel on Climate Change assessment (currently the Representative Concentration Pathway 8.5 scenario) or from independent ad hoc studies and expert solicitations. Ideally, users need high-end sea level information representing the upper tail of a single joint sea level frequency distribution, which considers all plausible yet unknown emission scenarios as well as involved physical mechanisms and natural variability of sea level, but this is not possible. In the absence of such information we propose a framework that would infer the required information from explicit conditional statements (lines of evidence) in combination with upper (plausible) physical bounds. This approach acknowledges the growing uncertainty in respective estimates with increasing time scale. It also allows consideration of the various levels of risk aversion of the diverse stakeholders who make coastal policy and adaptation decisions, while maintaining scientific rigor.
    Keywords: 551.46 ; 627.4 ; sea level rise ; high‐end estimates
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-07-05
    Description: We quantify the rate of sea level rise around the Australian continent from an analysis of tide gauge and Global Positioning System (GPS) data sets. To estimate the underlying linear rates of sea level change in the presence of significant interannual and decadal variability (treated here as noise), we adopt and extend a novel network adjustment approach. We simultaneously estimate time-correlated noise as well as linear model parameters and realistic uncertainties from sea level time series at individual gauges, as well as from time-series differences computed between pairs of gauges. The noise content at individual gauges is consistent with a combination of white and time-correlated noise. We find that the noise in time series from the western coast of Australia is best described by a first-order Gauss–Markov model, whereas east coast stations generally exhibit lower levels of time-correlated noise that is better described by a power-law process. These findings suggest several decades of monthly tide gauge data are needed to reduce rate uncertainties to 〈0.5 mm yr –1 for undifferenced single site time series with typical noise characteristics. Our subsequent adjustment strategy exploits the more precise differential rates estimated from differenced time series from pairs of tide gauges to estimate rates among the network of 43 tide gauges that passed a stability analysis. We estimate relative sea level rates over three temporal windows (1900–2011, 1966–2011 and 1993–2011), accounting for covariance between time series. The resultant adjustment reduces the rate uncertainty across individual gauges, and partially mitigates the need for century-scale time series at all sites in the network. Our adjustment reveals a spatially coherent pattern of sea level rise around the coastline, with the highest rates in northern Australia. Over the time periods beginning in 1900, 1966 and 1993, we find weighted average rates of sea level rise of 1.4 ± 0.6, 1.7 ± 0.6 and 4.6 ± 0.8 mm yr –1 , respectively. While the temporal pattern of the rate estimates is consistent with acceleration in sea level rise, it may not be significant, as the uncertainties for the shorter analysis periods may not capture the full range of temporal variation. Analysis of the available continuous GPS records that have been collected within 80 km of Australian tide gauges suggests that rates of vertical crustal motion are generally low, with the majority of sites showing motion statistically insignificant from zero. A notable exception is the significant component of vertical land motion that contributes to the rapid rate of relative sea level change (〉4 mm yr –1 ) at the Hillarys site in the Perth area. This corresponds to crustal subsidence that we estimate in our GPS analysis at a rate of –3.1 ± 0.7 mm yr –1 , and appears linked to groundwater withdrawal. Uncertainties on the rates of vertical displacement at GPS sites collected over a decade are similar to what we measure in several decades of tide gauge data. Our results motivate continued observations of relative sea level using tide gauges, maintained with high-accuracy terrestrial and continuous co-located satellite-based surveying.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...