GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Malden, USA : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A double–inverse microemulsion (IME) process is used for synthesizing nano-sized Ba2Ti9O20 powders. The crystallization of powders thus obtained and the microwave dielectric properties of the sintered materials were examined. The IME-derived powders are of nano-size (∼21.5 nm) and possess high activity. The BaTi5O11, intermediate phase resulted when the IME-derived powders were calcined at 800°C (4 h) in air. However, high-density Ba2Ti9O20 materials with a pure triclinic phase (Hollandite like) can still be obtained by sintering such a BaTi5O11 dominated powders at 1250°C/4 h. The phase transformation kinetics for the IME-derived powders were markedly enhanced when air was replaced by O2 during the calcinations and sintering processes. Both the calcination and densification temperatures were reduced by around 50°C compared with the process undertaken in air. The microwave dielectric properties of sintered materials increase with the density of the samples, resulting in a large dielectric constant (K≅39) and high-quality factor (Q×f≅28 000 GHz) for samples possessing a density higher than 95% theoretical density, regardless of the sintering atmosphere. Overfiring dissociates Ba2Ti9O20 materials and results in a poor-quality factor.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...