GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-12
    Description: Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007–2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-12
    Description: The Global Terrestrial Network for Permafrost (GTN-P, gtnp.org) established the new ‘dynamic’ GTN-P Database (gtnpdatabase.org), which targets the Essential Climate Variable (ECV) permafrost, described by the thermal state of permafrost (TSP) and active layer thickness (ALT). This paper outlines the requirements for assessing the GTN-P data quality. Our aim is to conceive and discuss useful data quality indices as a basis for the 2nd official GTN-P National Correspondents Meeting in Quebec, September 2015. We describe the TSP and ALT data structures and the importance of precise metadata for the reliability of sound statements on the state and changes of permafrost. We define the most critical parameters related to quality assessment of TSP (borehole depth, number of sensors per depth, recording interval, sensor calibration) and ALT (grid structure, null values and exceeded maximum values, time consistency). We conceive and discuss a set of potential (to be reviewed at the GTN-P meeting) data quality indices by distinguishing between different borehole depths and spatial and temporal data dimensions of TSP and ALT datasets.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    University of the Arctic/CCI Press (Printed Version)and ICSU/WMO Joint Committee for International Polar Year 2007–2008.
    In:  EPIC3Understanding Earth Polar Challenges: International Polar Year 2007-2008, Understanding Earth Polar Challenges: International Polar Year 2007-2008, Rovaniemi, Finland & , Edmonton, Alberta, Canada, University of the Arctic/CCI Press (Printed Version)and ICSU/WMO Joint Committee for International Polar Year 2007–2008., 697 p., pp. 255-272, ISBN: 978-1-896445-55-7
    Publication Date: 2014-04-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-19
    Description: Permafrost temperatures have been recorded in dominant ice-rich periglacial landforms in five different sites of continuous and sporadic permafrost for improved understanding of physical permafrost processes, and for the comparison of these processes between sites. Additionally active layer thickness from the official CALM data from each of the same sites have been compared. The landscapes vary from high-relief mountainous terrain to deltaic and floodplain lowlands, and are thus characteristic of large parts of the permafrost landscapes of the Northern Hemisphere, representing the landscape variability. Significant variation is seen in terms of the sensitivity towards climate change between the five site, ranging from relatively cold -8˚C permafrost in Siberia but with very large thermal conductivity over warm -4˚C permafrost in Svalbard with normal thermal conductivity, to permafrost warmer than -1˚C in Abisko. Thickest active layer is found in Svalbard, and thinnest in Kytalik in Siberia, but with the peat of the sporadic permafrost in Abisko at an intermediate level.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Bulletin of the American Meteorological Society, AMER METEOROLOGICAL SOC, 92(6), pp. 548-549, ISSN: 0003-0007
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Svalbard Integrated Arctic Earth Observing System
    In:  EPIC3SESS Report 2019 - The State of Environmental Science in Svalbard, Svalbard Integrated Arctic Earth Observing System
    Publication Date: 2020-01-15
    Description: This report follows up on the report published in the SESS Report 2018 (Christiansen et al. 2019). Since 2018, the Norwegian Environment Agency has released the Climate in Svalbard 2100 report summarizing observed trends in permafrost conditions over the period of field measurements and a forecast for the future, based on recent climate and permafrost modelling (Hanssen-Bauer et al. 2019). It is well established that the terrestrial cryosphere in Svalbard has changed since modern permafrost monitoring efforts began in the late 1990s. In central Svalbard in the Adventdalen area, ground temperatures have risen by as much as 0.15°C per year (10 m depth) and the thickness of the seasonally-unfrozen active layer increased by 0.6 cm per year since 2000 in sediments and 1.6 cm/year in bedrock (Hanssen-Bauer et al. 2019), while in Ny-Ålesund ground temperatures increased by 0.18°C/year and the thickness of active layer increased by 5 cm/year (Boike et al. 2018). Modern monitoring techniques mean that it is relatively easy to quantify permafrost change in terms of temperature. The visible effects of warming permafrost are, however, more ambiguous. A prolonged thaw season is anticipated to result in a thicker active layer, and increased rainfall intensity can result in more frequent landslides. The strength of frozen soil decreases when warming and permafrost change may expectedly result in infrastructure problems in cases where climate change was not considered during the initial design. The aims of this part of the State of Environmental Science in Svalbard reporting are to: (1) provide an overview of permafrost data collected during the 2017-2018 hydrological year (1 September 2017 – 31 August 2018), (2) contrast these results with the 2016-2017 hydrological year as presented in Christiansen et al. (2019), (3) summarise developments in permafrost monitoring in Svalbard, and (4) provide recommendations for future permafrost investigations. Understanding the spatial distribution of permafrost conditions is critical to predicting geomorphological change and understanding the variability in climate impacts. 23710
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Svalbard Integrated Arctic Earth Observing System, Longyearbyen
    In:  EPIC3SESS report 2020 - The State of Environmental Science in Svalbard - an annual report, Svalbard Integrated Arctic Earth Observing System, Longyearbyen, 3
    Publication Date: 2021-08-20
    Description: The observed mean annual permafrost temperature data for the period 2016-2019 at 10-20 m depths show a range from no warming in the Adventdalen, Ny-Ålesund and Barentsburg areas, up to 0.15°C/yr warming in inner Adventdalen at Janssonhaugen. This shows that there is still a response to the general warming that Svalbard has seen over the last decades. During the observation period, the mean annual air temperature declined by 0.6°C, with a particular cooling in the autumns. There was a clear reduction in the amount of precipitation of 100 mm. This caused the top permafrost temperature to decrease at all observation sites ranging from 0.2°C/yr at Kapp Linné to 0.6°C/yr in Barentsburg. The active layer has mostly decreased slightly in thickness over the 2016-2019 period from 1 cm/yr in Ny-Ålesund to 6.5 cm/yr in Adventdalen, while two sites had small increases, 1 cm/yr at Kapp Linne and 3.5 cm/yr at Janssonhaugen. In the blockfield at Breinosa the active layer doubled to 98 cm, while in raised marine sediments in Barentsburg the active layer thinned by 18.5 cm/yr from summer 2017 to summer 2019. The ground ice content in the Svalbard permafrost observation boreholes is largest in the permafrost in valley bottom sediments, up to 160% (relative to dry weight), with much less ice in the bedrock sites, typically below 15%. In Adventdalen the permafrost has a much higher content of ground ice, reaching 150% in the top 1-3 m, where terrestrial sediments such as loess and solifluction sediment dominate, and clearly lower ice content ~25-30% in the fluvial and marine sediments below. The overview of the drilling equipment demonstrates clearly that Svalbard is now well-equipped for drilling boreholes with a range of equipment, allowing creation of both deep and shallow boreholes. The review of the drilling methods used for the existing observation boreholes shows that most of them, even though made for permafrost observation, did not collect cores, and some do not even have any stratigraphical record.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Bulletin of the American Meteorological Society, American Meteorological Society, 104(9), pp. s1-s10, ISSN: 0003-0007
    Publication Date: 2024-05-08
    Description: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES〈/jats:p〉 〈jats:p〉Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.〈/jats:p〉 〈jats:p〉In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.〈/jats:p〉 〈jats:p〉Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.〈/jats:p〉 〈jats:p〉While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.〈/jats:p〉 〈jats:p〉The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.〈/jats:p〉 〈jats:p〉In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.〈/jats:p〉 〈jats:p〉In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.〈/jats:p〉 〈jats:p〉Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.〈/jats:p〉 〈jats:p〉A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.〈/jats:p〉 〈jats:p〉As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.〈/jats:p〉 〈jats:p〉In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.〈/jats:p〉 〈jats:p〉On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...