GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Polycrystalline silicon (poly-Si) films grown by ultrahigh-vacuum chemical vapor deposition (UHVCVD) system and then annealed by excimer laser at room temperature have been investigated for the applications in polycrystalline silicon thin-film transistors (poly-Si TFTs). The results showed that the grain size of the laser-annealed poly-Si film decreased with laser energy density when a lower laser energy density below 157.7 mJ/cm2 was used. At about the threshold laser energy density (∼134.5 mJ/cm2), the finest grain structure could be obtained due to the partial melting in the top layer of the film. When the energy density of the excimer laser was larger than the threshold energy density, the large grain growth was initiated. The largest grain structure could be obtained at ∼184 mJ/cm2, while its surface roughness was better than that of the nonannealed UHVCVD poly-Si films. The surface roughening was suggested to arise from the specific melt-regrowth process but not the rapid release of hydrogen or capillary wave mechanism derived from laser-annealed amorphous silicon. By use of the laser-annealed UHVCVD poly-Si films as the active layer, the fabricated poly-Si TFT exhibited a field-effect mobility of 138 cm2/V s, a subthreshold swing of 0.8 V/dec, a threshold voltage of 3.5 V, and an on/off current ratio of ∼106. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-10
    Description: Hepatitis delta virus (HDV) is a satellite virus of hepatitis B virus (HBV). HDV genome encodes two forms of hepatitis delta antigen (HDAg), small HDAg (HDAg-S), which is required for viral replication, and large HDAg (HDAg-L), which is essential for viral assembly. HDAg-L is identical to HDAg-S except that it bears a 19-amino acid extension at the C terminus. Both HDAgs contain a nuclear localization signal (NLS), but only HDAg-L contains a CRM1-independent nuclear export signal at its C terminus. The nuclear export activity of HDAg-L is important for HDV particle formation. However, the mechanisms of HDAg-L-mediated nuclear export of HDV ribonucleoprotein are not clear. In this study, the host cellular RNA export complex TAP-Aly was found to form a complex with HDAg-L, but not with an export-defective HDAg-L mutant, in which Pro205 was replaced by Ala. HDAg-L was found to colocalize with TAP and Aly in the nucleus. The C-terminal domain of HDAg-L was shown to directly interact with the N terminus of TAP, whereas an HDAg-L mutant lacking the NLS failed to interact with full-length TAP. In addition, small hairpin RNA-mediated down-regulation of TAP or Aly reduced nuclear export of HDAg-L and assembly of HDV virions. Furthermore, a peptide, TAT-HDAg-L(198–210), containing the 10-amino acid TAT peptide and HDAg-L(198–210), inhibited the interaction between HDAg-L and TAP and blocked HDV virion assembly and secretion. These data demonstrate that formation and release of HDV particles are mediated by TAP and Aly.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...