GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Checkley, David M; Dickson, Andrew G; Takahashi, Motomitsu; Radich, J Adam; Eisenkolb, Nadine; Asch, Rebecca (2009): Elevated CO2 enhances otolith growth in young fish. Science, 324(5935), 1683, https://doi.org/10.1126/science.1169806
    Publication Date: 2024-06-04
    Description: A large fraction of the carbon dioxide added to the atmosphere by human activity enters the sea, causing ocean acidification. We show that otoliths (aragonite ear bones) of young fish grown under high CO2 (low pH) conditions are larger than normal, contrary to expectation. We hypothesize that CO2 moves freely through the epithelium around the otoliths in young fish, accelerating otolith growth while the local pH is controlled. This is the converse of the effect commonly reported for structural biominerals.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Atractoscion nobilis; Atractoscion nobilis, dry mass; Atractoscion nobilis, larval age; Atractoscion nobilis, orientation; Atractoscion nobilis, otolith area; Behaviour; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Checkley_etal_09; Chordata; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Image analysis NIH ImageJ; Laboratory experiment; Laboratory strains; Light:Dark cycle; Measured; Nekton; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Otolith; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Salinity; Single species; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 4392 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 335 (1988), S. 346-348 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Atlantic menhaden spawns most intensively during winter, south of Cape Hatteras and west of the Gulf Stream2 (Fig. 1). Within six days of fertilization, larvae feed on the microzoo-plankton4 and enter estuaries and metamorphose after 30-90 days3. A distinct maximum in the frequency of winter ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Large and productive fisheries occur in regions experiencing or projected to experience ocean acidification. Anchoveta (Engraulis ringens) constitute the world's largest single-species fishery and live in one of the ocean's highest pCO2 regions. We investigated the relationship of the distribution and abundance of Anchoveta eggs and larvae to natural gradients in pCO2 in the Peruvian upwelling system. Eggs and larvae, zooplankton, and data on temperature, salinity, chlorophyll a and pCO2 were collected during a cruise off Peru in 2013. pCO2 ranged from 167-1392 µatm and explained variability in egg presence, an index of spawning habitat. Zooplankton abundance explained variability in the abundance of small larvae. Within the main spawning and larva habitats (6-10°S), eggs were found in cool, low-salinity, and both extremely low (less than 200 µatm) and high (more than 900 µatm) pCO2 waters, and larvae were collected in warmer, higher salinity, and moderate (400-600 µatm) pCO2 waters. Our data support the hypothesis that Anchoveta preferentially spawned at high pCO2 and these eggs had lower survival. Enhanced understanding of the influence of pCO2 on Anchoveta spawning and larva mortality, together with pCO2 measurements, may enable predictions of ocean acidification effects on Anchoveta and inform adaptive fisheries management.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...