GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Crops-Genetics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (460 pages)
    Edition: 1st ed.
    ISBN: 9783031008481
    Series Statement: Compendium of Plant Genomes Series
    DDC: 572.82
    Language: English
    Note: Intro -- Preface to the Series -- Preface -- Contents -- Contributors -- 1 The Broomcorn Millet Genome -- Abstract -- 1.1 Introduction -- 1.2 Taxonomy of Broomcorn Millet -- 1.2.1 Botanical Characteristics -- 1.2.2 Geographic Distribution -- 1.2.3 Conserved Germplasms of Broomcorn Millet -- 1.2.4 The Underutilized Status of Broomcorn Millet -- 1.2.5 Qualities and Values of Broomcorn Millet -- 1.3 Genome Sequencing -- 1.3.1 Genome Assembly -- 1.3.2 Genetic Linkage Map -- 1.3.3 Genome Annotation -- 1.3.4 Evolutionary History of Broomcorn Millet -- 1.3.5 Comparative Genomics with Other Crops -- 1.3.6 Genes Involved in C4 Photosynthesis -- 1.4 Future Goals and Prospects -- Acknowledgements -- References -- 2 Buckwheat Genome and Genomics -- Abstract -- 2.1 Introduction -- 2.2 Buckwheat Genome -- 2.3 Buckwheat Genomics -- 2.4 Key Traits and Gene Function -- 2.5 Conclusion and Perspective -- Acknowledgements -- References -- 3 Tef [Eragrostis tef (Zucc.) Trotter] -- Abstract -- 3.1 Crop Background -- 3.1.1 Botanical Description -- 3.1.2 Geographical Distribution -- 3.1.3 Accessible in Seed Banks -- 3.1.4 Why It Is Underutilized? -- 3.1.5 Benefits of Tef -- 3.2 Genome Sequencing -- 3.2.1 First Sequencing: Tef Improvement Project 2010 -- 3.2.2 Chromosome-Level Sequencing: Tef Sequencing Consortium -- 3.2.3 Repetitive Element Content -- 3.2.4 Resequencing -- 3.2.5 Candidate Genes for Agronomic Traits -- 3.3 Conclusions -- References -- 4 The Apricot Genome -- Abstract -- 4.1 Introduction -- 4.1.1 Botanical Description -- 4.1.1.1 The Main Species of Apricot -- 4.1.1.2 Eco-geographical Groups of Common Apricot -- 4.2 Origin and Distribution -- 4.2.1 Geographic Distribution -- 4.2.1.1 The Seed Banks of Apricot -- 4.2.2 Economic and Ecological Value of Apricot -- 4.2.2.1 Nutritional Value -- 4.2.2.2 Ecological Value -- 4.3 Genome Sequencing -- 4.3.1 Strategy. , 4.3.1.1 Plant Materials -- 4.3.1.2 Sequencing Strategy -- 4.3.2 The Apricot Genome Assembly -- 4.3.3 Resequencing -- 4.3.4 Comparison to Other Crops -- 4.3.5 Gene Discovery -- 4.3.6 Candidate Genes for Agronomic Traits -- 4.3.6.1 Accumulation of β-Carotene in Apricot -- 4.3.6.2 Amygdalin Metabolism and the Sweet/Bitterness Kernel Forming -- 4.3.6.3 Plum Pox Virus (PPV) -- 4.4 Future Goals and Prospects -- 4.4.1 The Goal of Apricot Genomics Research -- 4.4.2 Prospects and Implications of Apricot Genomics -- References -- 5 Chinese Jujube: Crop Background and Genome Sequencing -- Abstract -- 5.1 Crop Background -- 5.1.1 Introduction -- 5.2 Botanical Description -- 5.2.1 Taxonomy -- 5.2.2 Geographic Distribution -- 5.2.3 Morphology -- 5.3 Nutrient, Utilization, and Propagation -- 5.4 Research Challenges and Opportunities -- 5.5 Genome Sequencing -- 5.6 Strategy for Jujube Genome Assembly and Annotation -- 5.7 Features of Jujube Genome -- 5.8 Comparison to Other Crops in Evolution -- 5.9 Candidate Genes for Agronomic Traits -- 5.9.1 Genes Related to Vitamin C Accumulation in Fruit -- 5.9.2 Genes Related to Sugar Accumulation in Fruit -- 5.9.3 Self-shoot-pruning Trait Related Genes -- 5.9.4 Abiotic/Biotic Stress-Related Genes -- 5.9.5 Genes Related to Flower Development -- 5.9.6 S-Locus Genes in Jujube -- 5.9.7 Gene Family-Related Research Based on the 'Dongzao' Genome -- 5.10 Resequencing in Jujube Research -- 5.11 Transcriptome-Related Research -- 5.12 Future Goals and Prospects -- References -- 6 The Longan (Dimocarpus longan) Genome -- Abstract -- 6.1 Background -- 6.2 Genome Sequencing -- 6.2.1 Strategy -- 6.2.2 Results-Genome Statistics -- 6.2.3 Resequencing -- 6.3 RNA Sequencing -- 6.3.1 Whole Transcriptome Sequencing -- 6.3.2 Single-Cell RNA Sequencing -- 6.3.3 microRNAs -- 6.3.4 Long Noncoding RNAs -- 6.3.5 Circular RNAs. , 6.4 DNA Methylation Sequencing -- 6.5 Proteomics -- 6.6 Genetic Transformation -- 6.7 Future Prospects -- References -- 7 The Mangosteen Genome -- Abstract -- 7.1 The Genus Garcinia L. -- 7.2 Botanical Description of Mangosteen -- 7.2.1 Mangosteen as an Apomictic Species -- 7.2.2 Genetic Variation of Mangosteen -- 7.3 Origin and Distribution of Mangosteen -- 7.3.1 Origin of Mangosteen -- 7.3.2 Closely Related Species of Mangosteen -- 7.3.2.1 G. celebica L. (Syn. G. hombroniana Pierre) -- 7.3.2.2 G. malaccensis Hook. F. -- 7.3.2.3 G. penangiana Pierre -- 7.3.2.4 G. opaca King -- 7.3.3 Geographic Distribution of Mangosteen -- 7.3.4 Mangosteen Export from Malaysia -- 7.4 Conservation of Mangosteen Germplasm -- 7.5 Why Mangosteen is Underutilised? -- 7.6 Benefits of Mangosteen -- 7.7 Genomics Study of Mangosteen -- 7.7.1 Genome Sequencing of Mangosteen -- 7.7.2 Genome Size of Mangosteen -- 7.7.3 Cytogenetics of Mangosteen -- 7.8 Conclusion -- Acknowledgements -- References -- 8 The Passion Fruit Genome -- Abstract -- 8.1 Introduction -- 8.1.1 Genetic Studies and Breeding Efforts -- 8.2 Sequencing and Assembly of Passiflora Genomes -- 8.2.1 Transposable Element Detection in Passiflora Genomes -- 8.2.2 Passiflora Cytogenomics -- 8.2.3 Functional Annotation of Passiflora Genomes -- 8.2.4 The Passiflora MADS-Box Gene Family and Phase Change Transitions -- 8.2.5 Passiflora Organellar Genomes -- 8.3 Conclusion -- References -- 9 The Soursop Genome (Annona muricata L., Annonaceae) -- Abstract -- 9.1 Introduction -- 9.1.1 Early Angiosperm Genome Evolution -- 9.1.2 The Custard Apple Family (Annonaceae) and Pomology -- 9.2 Research Scope and Methodological Approach -- 9.2.1 Genomic DNA Extraction, Illumina Sequencing, and Genome Size Estimation -- 9.2.2 Library Preparation and Sequencing for PacBio, 10X Genomics and BioNano. , 9.2.3 Denovo Genome Assembly, 10X and Optical Scaffolding -- 9.2.4 Hi-C Scaffolding -- 9.2.5 Repeat Sequence Detection -- 9.2.6 RNA Sequencing and Transcriptome Assembly -- 9.2.7 Annotation -- 9.2.8 Positive Selection -- 9.2.9 Detecting Historical Changes in Population Size -- 9.2.10 Hybridization Capture Data Mapping -- 9.2.11 Coalescent Phylogenomics -- 9.2.12 Gene Family Expansion -- 9.2.13 Identification of Whole Genome Duplication Events -- 9.2.14 Evolutionary Incongruence in Early Angiosperms -- 9.3 Genome Perspectives for Pomological and Early Angiosperm Research -- 9.3.1 A High-Quality Genome of the Soursop -- 9.3.2 Repeat Sequences in the Soursop Genome -- 9.3.3 Genes Involved in Soursop Defence and Disease Resistance -- 9.3.4 Historical Fluctuations in Population Size of Annona muricata -- 9.3.5 Mapping of Annona Genes from Hybridization Capture Analyzes -- 9.3.6 Coalescent Phylogenomics in Annonaceae and Early Angiosperms -- 9.3.7 Gene Family Expansion in Annona muricata -- 9.3.8 Evolutionary Incongruence and WGD during Early Angiosperm Divergence -- 9.4 Future Goals and Prospects -- Acknowledgements -- References -- 10 Underutilised Fruit Tree Genomes from Indonesia -- Abstract -- 10.1 Overview -- 10.2 Underutilised Fruits -- 10.2.1 Menteng -- Baccaurea motleyana Müll.Arg. -- 10.2.2 Nangkadak -- Artocarpus heterophyllus x Artocarpus integer -- 10.2.3 Rambutan -- Nephelium lappaceum L. -- 10.2.4 Sidempuan Snake Fruit -- Salacca sumatrana Becc. -- 10.2.5 Gandaria -- Bouea macrophylla Griffith -- 10.2.6 Lobi-Lobi -- Flacourtia inermis (Burm. f.) Merr. -- 10.2.7 Duku -- Lansium domesticum (Lansium parasiticum (Osbeck) Sahni and Bennet) -- 10.2.8 Matoa -- Pometia pinnata J.R.Forst. and G.Forst. -- 10.2.9 Kedondong -- Spondias dulcis L. -- 10.2.10 Jambu Air or Wax Apple -- Syzygium samarangense (Blume) Merr. and L.M.Perry. , 10.2.11 Sentul or Kecapi -- Sandoricum koetjape (Burm.f.) Merr -- 10.2.12 Kasturi or Kalimantan Mango -- Mangifera casturi Kosterm -- 10.2.13 Durian Kura-Kura -- Durio testudinarius Becc -- 10.3 Conclusions -- References -- 11 The Bambara Groundnut Genome -- Abstract -- 11.1 Introduction -- 11.1.1 Botanical Description and General Ecology -- 11.1.2 Geographical Distribution -- 11.1.3 Genetic Resources, Accessibility to/from Seed Banks -- 11.1.4 Bambara Groundnut-An Important but Underutilised Crop -- 11.1.5 Nutritional Composition -- 11.1.6 Underutilisation of Bambara Groundnut -- 11.2 Molecular Tools and Their Application in Bambara Groundnut -- 11.2.1 Molecular Markers-Development and Applications -- 11.2.2 Microarrays -- 11.2.2.1 RNAseq in Bambara Groundnut -- 11.2.3 Bambara Groundnut Genome-Current Achievements -- 11.3 Structure and Nomenclature of Traits in Linkage to Genome -- 11.4 Future Goals and Prospects -- 11.5 Conclusion -- References -- 12 Grasspea -- Abstract -- 12.1 Overview -- 12.2 Practical Needs and Objectives -- 12.2.1 Constraints -- 12.2.2 Breeding Targets -- 12.2.3 Breeding Resources -- 12.3 Ongoing and Projected Research -- 12.3.1 Genetics -- 12.3.2 Genetic Maps -- 12.3.2.1 An F2 Map -- 12.3.2.2 Recombinant Inbred Mapping Populations -- 12.3.2.3 Relationship Between Genetic Maps of Related Legumes -- 12.3.3 Transcriptomic Studies -- 12.3.4 Genomics -- 12.4 Conclusion and Perspectives -- Acknowledgements -- References -- 13 The Lablab Genome: Recent Advances and Future Perspectives -- Abstract -- 13.1 Introduction -- 13.2 Biology, Resources and Utilisation -- 13.2.1 Botanical Description -- 13.2.2 Geographical Distribution and General Ecology -- 13.2.3 Genetic Resources and Accessibility from Genebanks -- 13.2.4 Traits of Benefit and Reasons for Being Underutilised -- 13.2.5 Traditional and Improved Varieties. , 13.3 Molecular Tools and Their Application in Lablab.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Plant genomes. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (228 pages)
    Edition: 1st ed.
    ISBN: 9783319992082
    Series Statement: Compendium of Plant Genomes Series
    Language: English
    Note: Intro -- Preface to the Series -- Contents -- 1 Introduction: The Importance of Eggplant -- Abstract -- 1.1 Overview -- 1.2 Economic Importance of Eggplant -- 1.3 Academic Importance of Eggplant -- 1.3.1 Eggplant as a Model for Parallel Evolution -- 1.3.2 Eggplant Wild Relatives for Crop Improvement -- 1.3.3 Transcriptomics in Eggplant -- 1.3.3.1 Eggplant and Its Relatives as a Model for Understanding Pathogen Infection -- 1.3.3.2 Eggplant as a Model to Understanding Anthocyanin Accumulation in Plants -- 1.3.3.3 Eggplant as a Model for Understanding the Wider Effects of Genetic Modification -- 1.4 Conclusions -- Literature Cited -- 2 Eggplant (Solanum melongena L.): Taxonomy and Relationships -- Abstract -- 2.1 Introduction -- 2.2 The Leptostemonum Clade -- 2.3 The Old World spiny solanums -- 2.4 The Eggplant Clade -- 2.5 Other Cultivated Eggplant Species -- 2.6 Conclusions and Prospects for Future Understanding -- Acknowledgements -- Literature Cited -- 3 The Genetics of Eggplant Nutrition -- Abstract -- 3.1 Introduction -- 3.2 Solanaceae Biodiversity Resources: Translating Trait Variation to Nutritional Value -- 3.2.1 Fruit Size, Antioxidants, and Shelf Life: An Entangled Relationship -- 3.2.2 Exploiting the Genetic Basis of Traits to Understand Artificial Selection -- 3.2.3 Introgression for Meeting Nutrition Needs -- 3.3 Phenotypic Similarity in Solanum Predicts Some Genetic Similarity -- 3.3.1 From Species Comparison to Clade Comparisons -- 3.4 Case Study: Gene Expression Predicts the Phenylpropanoid Pathway -- 3.4.1 Methods -- 3.4.2 Results and Discussion -- Literature Cited -- 4 Molecular Mapping and Synteny -- Abstract -- 4.1 Introduction -- 4.2 Genome-scale Macrosynteny in the Solanaceae -- 4.3 Microsynteny in the Solanaceae -- 4.4 Comparative Mapping Between Eggplant and Other Members of the Solanaceae -- References. , 5 Molecular Mapping, QTL Identification, and GWA Analysis -- Abstract -- 5.1 Linkage Map Construction -- 5.1.1 First-Generation Maps -- 5.1.2 Second-Generation Maps -- 5.2 QTL Mapping -- 5.3 Genome-Wide Association Mapping -- References -- 6 The Draft Genome of Eggplant -- Abstract -- 6.1 Introduction -- 6.2 Genome Assembly of Eggplant -- 6.2.1 Sequencing of the Eggplant Genome -- 6.2.2 Genome Assembly -- 6.2.3 Repetitive Sequences -- 6.2.4 Gene Prediction -- 6.2.5 Gene Annotation -- 6.3 Databases -- 6.3.1 The Eggplant Genome DataBase -- 6.3.2 The Plant Genome DataBase Japan (PGDBj) -- 6.4 Genome Sequencing Projects by Other Research Groups -- 6.4.1 Genome Sequencing of Eggplant -- 6.4.2 Complete Chloroplast Genome Sequence -- 6.5 Conclusion -- Literature Cited -- 7 Advances in Eggplant Genome Sequencing -- Abstract -- 7.1 Development of a New Eggplant Genome Sequence -- 7.1.1 Genome Sequencing and Assembly of the Eggplant Inbred Line 67/3 -- 7.1.2 Optical Mapping of the Line 67/3 -- 7.1.3 Eggplant Genome Anchoring -- 7.2 The Chloroplast Genome of Eggplant -- Literature Cited -- 8 Genome Annotation -- Abstract -- 8.1 Identification of Transposable Elements (TEs) -- 8.2 Gene Prediction and Annotation -- 8.3 Comparison Among Solanaceae Genome Sequences -- 8.4 Gene Families -- 8.5 Discovery of Solanum melongena Genome-Wide Microsatellite Markers -- Literature Cited -- 9 Resequencing -- Abstract -- 9.1 Introduction -- 9.2 Resequencing in Eggplant -- 9.3 High-Throughput Sequencing and Mapping -- 9.4 Variant Calling, Distribution and Annotation -- 9.5 Conclusions -- Acknowledgements -- References -- 10 Eggplants and Relatives: From Exploring Their Diversity and Phylogenetic Relationships to Conservation Challenges -- Abstract -- 10.1 Introduction -- 10.2 The Genus Solanum and Its Taxonomic Treatment. , 10.2.1 Classifications Based on Phenotypic Similarities Between Species -- 10.2.2 Classifications Based on Phylogenetic Relationships Between Species -- 10.2.3 Phylogenetic Relationships Within Subgenus Leptostemonum (spiny solanums) -- 10.2.3.1 New World spiny solanums -- 10.2.3.2 Old World spiny solanums -- 10.2.3.3 The Cultivated Eggplants and Their Closest Relatives: From Morphology to Genomics -- 10.2.4 Species Relationships: A Breeder's Look at the Crossroads Between Approaches and Criteria -- 10.2.4.1 DNA-Based Similarities Between Species -- 10.2.4.2 DNA-Based Phylogeny Combined to Other Criteria -- 10.2.4.3 Ploidy, Chromosomes and Meiotic Behaviour -- 10.3 Old World Subgenus Leptostemonum: Inventory and Conservation -- 10.3.1 Preliminary Inventory -- 10.3.2 From Nature to Genebanks: Opportunities and Threats -- 10.3.2.1 Ex Situ Collections of Cultivated and Wild Eggplants -- 10.3.2.2 Ex Situ Regeneration of Eggplants and Relatives Germplasm -- 10.4 Other "Eggplant" Species -- 10.4.1 Lasiocarpa Clade (Leptostemonum Clade) -- 10.4.2 Morelloid Clade (M Clade) -- 10.4.3 Archaesolanum Clade (M Clade) -- 10.4.4 Potato Clade -- 10.4.5 Cyphomandra Clade -- 10.5 Conclusion -- Appendix 1 -- Appendix 2 -- Appendix 3 -- Appendix 4 -- References -- 11 Crossability and Diversity of Eggplants and Their Wild Relatives -- Abstract -- 11.1 Introduction -- 11.2 Diversity of Cultivated and Wild Germplasm -- 11.2.1 Morphological and Genetic Diversity -- 11.2.1.1 Cultivated Germplasm -- 11.2.1.2 Wild Germplasm -- 11.2.2 Pest and Disease Resistances -- 11.2.2.1 Cultivated Germplasm -- 11.2.2.2 Wild Germplasm -- 11.2.3 Diversity for Other Traits -- 11.3 Crossability Between Eggplants and Relatives -- 11.3.1 Prezygotic and Post-zygotic Barriers -- 11.3.2 Cytogenetic Observations of Late Post-zygotic Barriers -- 11.3.3 Variation of Hybridisation Results. , 11.4 Overview of the Best Results Obtained When Crossing Spiny Solanums -- 11.4.1 Crosses Between Cultivated Eggplants -- 11.4.1.1 Solanum aethiopicum and S. macrocarpon -- 11.4.1.2 Solanum aethiopicum and S. melongena -- 11.4.1.3 Solanum macrocarpon and S. melongena -- 11.4.2 Crosses Between Cultivated Eggplants and Their Wild Progenitors -- 11.4.3 Crosses Between Cultivated Eggplants and (Non-progenitor) Wild Species -- 11.4.3.1 Reciprocal Crosses -- 11.4.3.2 Global Results for All Types of Crosses -- 11.4.4 Crosses Between Wild Species -- 11.5 Is Interspecific Crossability Predictable? -- 11.6 Overcoming Interspecific Hybrid Sterility via Tetraploidisation -- 11.7 Disharmonic Interaction Between Wild Cytoplasms and Eggplant Nucleus: An Opportunity for Breeders -- 11.7.1 Indehiscent Anthers-Non-release Type -- 11.7.2 No Formation of Pollen Grains -- 11.7.3 Towards Genetic Comparisons Between the Two CMS Types -- 11.8 Genetic Information Drawn from Interspecific Hybrid Phenotypes -- 11.8.1 Hybrids Between Cultivated Eggplants -- 11.8.1.1 Solanum aethiopicum and S. macrocarpon -- 11.8.1.2 Solanum aethiopicum and S. melongena -- 11.8.1.3 Solanum macrocarpon and S. melongena -- 11.8.2 Hybrids Between Cultivated Eggplants and Wild Species -- 11.8.3 Hybrids Between Wild Species -- 11.9 Somatic Interspecific Hybrids -- 11.9.1 Solanum Melongena + New World Spiny Solanums -- 11.9.2 Solanum Melongena + Old World Spiny Solanums -- 11.9.3 Other Somatic Hybridisations Involving Spiny Solanums -- 11.9.4 Solanum Melongena + Distantly Related Solanaceae Crops -- 11.10 Conclusions -- 11.10.1 Germplasm Characterisation -- 11.10.2 Sexual Crossability -- 11.10.3 Somatic Crossability -- 11.10.4 Hybrid Phenotypes and Genetics of Morphological Traits -- Literature Cited -- 12 Domestication of Eggplants: A Phenotypic and Genomic Insight -- Abstract. , 12.1 Domestication: An Overview -- 12.2 The Need to Understand Domestication -- 12.3 The Pathway(s) to Eggplant Domestication(s) -- 12.3.1 Solanum aethiopicum was Domesticated from S. anguivi -- 12.3.2 Solanum macrocarpon was Domesticated from Solanum dasyphyllum -- 12.3.3 Solanum melongena was Domesticated from Solanum insanum -- 12.3.4 Ongoing Questions About the Domestication Pathways -- 12.4 Domestication Genetics and Genomics of Eggplant -- References -- 13 Conclusions and Future Directions -- Abstract -- 13.1 Summary of Current Eggplant Work -- 13.2 Pathways for Future Research -- 13.2.1 Eggplant Improvement Through Introgression from Wild Species -- 13.2.2 Ecological and Evolutionary Research -- 13.3 Conclusions -- Literature Cited.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham : Springer
    Keywords: Plant Genetics and Genomics ; Plant genetics ; Plant breeding ; Agriculture
    Description / Table of Contents: Economic/Academic importance -- Botanical descriptions/cytology -- Classical genetics and traditional breeding -- Genetic basis of nutrition -- Molecular mapping - comparison to other crops -- Molecular mapping of genes & QTLs/Association Mapping -- Structural & functional genomic resources developed -- The draft genome -- Background history of the genome initiatives. Strategies for sequencing -- Repetitive sequences, gene annotation, gene families, genome duplication -- Synteny with allied & model genomes -- Other domesticated eggplants -- Domestication genomics -- Impact on germplasm characterization & gene discovery -- Impact on plant breeding -- Future prospects
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XII, 220 p)
    ISBN: 9783319992082
    Series Statement: Compendium of Plant Genomes
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Botany. ; Genetics. ; Biotechnology. ; Agriculture.
    Description / Table of Contents: Chapter 1. The Broomcorn Millet Genome -- Chapter 2. Buckwheat Genome and Genomics -- Chapter 3. Tef [Eragrostistis tef (Zucc.) Trotter] -- Chapter 4. The Apricot Genome -- Chapter 5. Chinese Jujube: Crop Background and Genome Sequencing -- Chapter 6. The Longan (Dimocarpus longan) Genome -- Chapter 7. The Mangosteen Genome -- Chapter 8. The Passion Fruit Genome -- Chapter 9. The Soursop Genome (Annona muricata L., Annonaceae) -- Chapter 10. Underutilised Fruit Tree Genomes from Indonesia -- Chapter 11. The Bambara Groundnut Genome: From the Crop to the Genome -- Chapter 12. Grasspea -- Chapter 13. The Lablab Genome -- Chapter 14. The Perennial Horse Gram (Macrotyloma axillare) Genome, Phylogeny, and Selection Across the Fabaceae -- Chapter 15. Breeding and Genomics of Pigeonpea in the Post-NGS Era -- Chapter 16. Rice Bean -- Chapter 17. The Winged Bean Genome: One Species Supermarket -- Chapter 18. Castor Bean: Recent Progress in Understanding the Genome of this Underutilized Crop -- Chapter 19. Genome Resources for Ensete Ventricosum (enset) and Related Species -- Chapter 20. Yam Genomics -- Chapter 21. The African Eggplant -- Chapter 22. Sequencing of the Bottle Gourd Genomes Enhances Understanding of the Ancient Orphan Crop -- Chapter 23. Advances and Prospects in Genomic and Functional Studies of the Aquatic Crop, Sacred Lotus -- Chapter 24. Utilising Public Resources for Fundamental Work in Underutilised and Orphan Crops.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XXIV, 450 p. 125 illus., 105 illus. in color.)
    Edition: 1st ed. 2022.
    ISBN: 9783031008481
    Series Statement: Compendium of Plant Genomes
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Chapman, Mark R (2010): Seasonal production patterns of planktonic foraminifera in the NE Atlantic Ocean: Implications for paleotemperature and hydrographic reconstructions. Paleoceanography, 25(1), PA1101, https://doi.org/10.1029/2008PA001708
    Publication Date: 2023-05-12
    Description: Sediment trap samples from OMEX 2 (49°N, 13°W) provide a continuous record of the seasonal succession of planktonic foraminifera in the midlatitude North Atlantic and reveal a complex relationship between periods of production and specific hydrographic conditions. Neogloboquadrina pachyderma dextral coiling (d.), Globigerina bulloides, and Globorotalia inflata are found in great numbers during both the spring and summer seasons, whereas Globigerina quinqueloba, Globorotalia hirsuta, Globorotalia scitula, and Globigerinita glutinata are associated predominantly with the increase in productivity during the spring bloom. Globigerinella aequilateralis, Orbulina universa, and Globigerinoides sacculifer are restricted to late summer conditions following the establishment of a warm, well-stratified surface ocean. An annually integrated fauna from the sediment trap, comprising ~13,000 individuals, is used to evaluate the accuracy of five faunal-based statistical methods of paleotemperature estimation. All of the temperature reconstruction techniques produce estimates of ~16°C and ~11°C for summer and winter surface temperature, respectively, which are in excellent agreement with regional hydrographic data and suggest that the sediment trap assemblage is well represented in the core top faunas. Analysis of the key species that dominate the OMEX 2 sediment trap fauna, G. bulloides, G. inflata, and N. pachyderma d., based on d18O derived temperatures from North Atlantic core top samples, suggests that seasonal variations in planktonic foraminiferal production are nonuniform across the midlatitudes and that this is likely to complicate reconstructing past seasonal hydrographic dynamics using these taxa.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Chapman, Mark R; Shackleton, Nicholas J; Zhao, Meixun; Eglinton, Geoffrey (1996): Faunal and alkenone reconstructions of subtropical North Atlantic surface hydrography and paleotemperature over the last 28 kyr. Paleoceanography, 11(3), 343-358, https://doi.org/10.1029/96PA00041
    Publication Date: 2023-05-12
    Description: Two techniques for estimating past variations in sea surface temperature (SST) have been used to investigate climatic change in Biogeochemical Oceanic Flux Study (BOFS) core 31K (19°N, 20°W) from the eastern subtropical Atlantic. High-resolution SST records for the last 28 kyr have been produced using planktonic foraminiferal assemblages, based on the Imbrie-Kipp transfer function technique, and the UK' 37 index derived from abundances of C37 alkenones biosynthesized by prymnesiophyte algae. Modern observations suggest that these indices reflect particular hydrographic conditions in the upper ocean: the UK? 37 index corresponds to the temperature at the time of maximum coccolith productivity, typically late spring-early summer in the study area today, whereas the faunal transfer function is calibrated for seasonal maximum and minimum temperatures. In general, the faunal and biomarker paleotemperature records display comparable SST variations during the last glacial and deglacial, but although the overall trends are similar, differences exist in the magnitude and timing of these temperature changes. Most notably, the faunal T warm and UK' 37 SST estimates diverge by 3°C between 8 ka and 6 ka, and this offset persists through the late Holocene. This difference cannot be adequately explained by uncertainties associated with either the calibration data sets or fluctuating preservation levels. We therefore propose that the deviation in SST estimates is linked to a switch in the seasonal timing of maximum coccolith production from the summer in the glacial ocean to the late spring-early summer in the modern ocean. Our results suggest that a dual approach to SST estimation based on faunal and biomarker proxies can provide a valuable means of evaluating mixed layer and productivity changes associated with the movement of oceanographic frontal zones during the late Quaternary.
    Keywords: AGE; Biogeochemical Ocean Flux Study; BOFS; BOFS31/1K; BOFS31#1; Calculated from UK'37 (Prahl et al., 1988); CD53; Charles Darwin; DEPTH, sediment/rock; GLAMAP; Globigerina bulloides, δ18O; KAL; Kasten corer; Mass spectrometer VG Isogas Prism; Northeast Atlantic; Sea surface temperature, annual mean; Sea surface temperature, summer; Sea surface temperature, winter; Transfer function (Imbrie & Kipp, 1971, in Turekian, Yale Univ Press)
    Type: Dataset
    Format: text/tab-separated-values, 210 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    Publication Date: 2023-05-12
    Keywords: Atlantic Ocean; Counting 〉150 µm fraction; DATE/TIME; DEPTH, water; Foraminifera, planktic; Foraminifera, planktic, other; Globigerina bulloides; Globigerina digitata; Globigerina falconensis; Globigerina quinqueloba; Globigerinella aequilateralis; Globigerinita glutinata; Globigerinoides ruber white; Globigerinoides sacculifer; Globorotalia hirsuta; Globorotalia inflata; Globorotalia scitula; Globorotalia truncatulinoides sinistral; Neogloboquadrina pachyderma dextral; Neogloboquadrina pachyderma sinistral; OMEX2; OMEX2_trap; Orbulina universa; Sample ID; Split; Trap, sediment; TRAPS
    Type: Dataset
    Format: text/tab-separated-values, 665 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-05-12
    Keywords: BC; Box corer; Charles Darwin; DEPTH, sediment/rock; Event label; Globigerina bulloides, δ18O; Isotope ratio mass spectrometry; Latitude of event; Longitude of event; NEAP; NEAP-01B; NEAP-02B; NEAP-03B; NEAP-04B; NEAP-05B; NEAP-06B; NEAP-07B; NEAP-08B; NEAP-09B; NEAP-10B; NEAP-11B; NEAP-12B; NEAP-13B; NEAP-14B; NEAP-15B; NEAP-16B; NEAP-17B; NEAP-18B; NEAP-19B; NEAP-20B
    Type: Dataset
    Format: text/tab-separated-values, 40 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-05-12
    Keywords: Depth, reference; DEPTH, sediment/rock; Knorr; KNR140; KNR140-37JPC; PC; Piston corer; Sea surface temperature, summer; South Atlantic Ocean
    Type: Dataset
    Format: text/tab-separated-values, 112 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-05-12
    Keywords: Depth, reference; DEPTH, sediment/rock; GC; Globigerina bulloides, δ18O; Gravity corer; NA87-25
    Type: Dataset
    Format: text/tab-separated-values, 104 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...