GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The effect of Aluminum (Al) on phytosiderophore-mediated solubilization of insoluble Fe and the uptake of phytosiderophore-Fe3+ complex was examined in wheat (Triticum aestivum L. cv. Atlas 66). Al addition did not affect the Fe solubilization by 2′-deoxymugineic acid (DMA), although Cu addition significantly inhibited the solubilization capacity. Addition of ten times more Al than Fe to the solution of DMA-Fe3+ complex did not decrease the absorption of the DMA-Fe3+ complex at 375 nm. Furthermore, NMR study indicated that Al did not shift the proton chemical shifts of DMA. All these results suggest that Al could not form a complex with the phytosiderophore, and is thereby unlikely to affect the process of phytosiderophore-mediated solubilization of Fe. Exposure of root to Al up to 100 μM for 3 h did not inhibit the DMA-Fe3+ uptake by the roots, but longer pretreatment (〉6 h) inhibited the uptake of the DMA-Fe3+ by more than 50%. Neither the uptake of DMA-Fe3+ nor root elongation was inhibited by 24 h pretreatment with 10 μM Al, but both uptake and root elongation were inhibited by higher Al (〉20 μM) pretreatment. These results suggest that Al did not directly block the transport of the phytosiderophore-Fe3+ complex, and that the decreased uptake of the phytosiderophore-Fe3+ complex resulted from the roots being damaged by Al.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 102 (1998), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Although Al-induced iron chlorosis has been observed in many plants, the mechanisms responsible for this phenomenon are yet to be understood. We investigated the effect of Al on iron acquisition in a Strategy II plant, wheat (Triticum aestivum L.) using both Al-tolerant (Atlas 66) and -sensitive (Scout 66) cultivars. When iron was supplied as insoluble iron, ferric hydroxide, in the culture solution, both cultivars without Al treatment grew normally, while those with 100 µM AlCl3 developed chlorosis of the young leaves after 3 days of the treatment. A 21-h treatment with 100 µM AlCl3 in 0.5 mM CaCl2 solution (pH 4.5) decreased the amount of 2′-deoxymugineic acid (DMA) secreted by Fe-deficient Atlas 66 and Scout 66 plants by 85 and 90%, respectively. The amount of DMA secreted decreased with increasing external Al concentrations. Al treatment during the biosynthesis process caused the inhibition of that of DMA within 3 h. The secretion process was also found to be inhibited by Al, resulting in the biosynthesized DMA remaining in the roots. These results demonstrate the inhibition by Al of both biosynthesis and secretion of DMA attributed to Al-induced iron chlorosis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Key words: Biosynthetic pathway ; Chromosomal location ; Hordeum ; Hydroxylation ; Iron acquisition ; Phytosiderophore
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Phytosiderophores, mugineic acids, have been demonstrated to be involved in Fe acquisition in gramineous plants. In this study, chromosomal arm locations of genes encoding for biosynthesis of various phytosiderophores were identified in a cultivar of barley (Hordeum vulgare L. cv. Betzes). Using wheat (Triticum aestivum L. cv. Chinese Spring)-barley (cv. Betzes) ditelosomic addition lines for 4HS and 4HL, a gene for hydroxylation of 2′-deoxymugineic acid to mugineic acid was localized to the long arm of barley chromosome 4H. To locate the gene for hydroxylation of mugineic acid to 3-epihydroxymugineic acid, hybrids between the 4H addition line and other wheat-barley addition lines were studied. Only a hybrid between 4H and 7H addition lines produced 3-epihydroxymugineic acid. The gene was further localized to the long arm of chromosome 7H by feeding mugineic acid to ditelosomic addition lines for 7HS and 7HL. A new phytosiderophore was discovered in both 7H and 7HL addition lines, which was identified to be 3-epihydroxy-2′-deoxymugineic acid by detailed nuclear magnetic resonance studies. These results revealed that in barley there are two pathways from 2′-deoxymugineic acid to 3-epihydroxymugineic acid: 2′-deoxymugineic acid → mugineic acid → 3-epihydroxymugineic acid and 2′-deoxymugineic acid → 3-epihydroxy-2′-deoxymugineic acid → 3-epihydroxymugineic acid. Barley genes encoding for the hydroxylations of phytosiderophores are located in different chromosomes and each gene hydroxylates different C-positions: the long arm of chromosome 4H carries the gene for hydroxylating the C-2′ position and the long arm of chromosome 7H carries the gene for hydroxylating the C-3 position of the azetidine ring.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...