GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Earth and Planetary Science Letters 75 (1985), S. 215-222 
    ISSN: 0012-821X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Earth and Planetary Science Letters 99 (1990), S. 170-184 
    ISSN: 0012-821X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0012-821X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 9 (1988), S. 293-310 
    ISSN: 1573-0581
    Keywords: oceanic lithosphere ; mantle flow ; mantle diapirs ; magma chamber ; ophiolites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract As a result of an extensive program of structural mapping in the ultramafic section of the Oman ophiolite, maps of mantle flow below the spreading center of origin have been drawn. They reveal a mantle diapiric system in which the uppermost mantle flow diverges from diapirs 10–15 km across, which could have been spaced by an average distance of 50 km. Some diapirs could have been located off-axis. The rotation of flow lines in the diapirs occurs within the few hundred meters of the transition zone separating the mantle and crustal formations. The importance of this zone is stressed. The structure of the layered gabbros of the crustal unit in most places reflects a large magmatic flow induced by the solid state flow in the underlying peridotites. The magmatic foliation of the gabbros steepens upsection and becomes parallel to the sheeted dike attitude. A new model of a tent-shaped magma chamber is derived from these structural data.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Mineralium deposita 20 (1985), S. 177-184 
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract About 15 chromite bodies have been recognized in the Maqsad area of the Oman ophiolite. The occurrence in this area of three chromite bodies within the cumulate sequence must be integrated into the classification of Cassard et al. (1981) which presently explains only those pods lying in the uppermost mantle sequence (plastically deformed harzburgites and dunites). The occurrence of chromite bodies within the cumulates and the abundance of chromite in the Maqsad area are related to the exceptional magmatic activity and the unusual plastic-flow pattern particular to this area. It was probably a feeding zone along the oceanic spreading center sitting on top of a mantle diapir.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-04
    Description: The genesis of primitive arc magmas has had a major impact on continent formation through time, but the rarity of exposures of deep arc sections limits our understanding of the details of melt migration and differentiation. Abundant pyroxenites are exposed within a 600 m thick section of arc-related mantle harzburgites and dunites in the Herbeira massif of the Cabo Ortegal Complex, Spain. We report a combination of field and petrographic observations with in situ and whole-rock geochemical studies of these pyroxenites. After constraining the effects of secondary processes (serpentinization, fluid or melt percolation and amphibolitization), we determine that the low Al content of pyroxenes, high abundance of compatible elements and the absence of plagioclase reflect melt–peridotite interaction and crystal segregation from primitive hydrous melts at relatively low pressure (〈1·2 GPa). Olivine clinopyroxenites and olivine websterites preserving dunite lenses (type 1 and 3 pyroxenites) represent the products of partial replacement of peridotites at decreasing melt/rock ratio following the intrusion of picritic melts. Massive websterites (type 2) may represent the final products of this reaction at higher melt/rock ratios. They crystallized from more Si-rich (boninitic) melts, potentially generated through differentiation of the initially picritic melts or intruded as dykes and veins. Rare opx-rich websterites (type 4) were produced by interaction of these melts with dunites. Chromatographic re-equilibration accompanied late-magmatic crystallization of amphibole from migrating or trapped residual melts. This percolative fractional crystallization produced a range of rare earth element (REE) patterns from spoon-shaped in type 1 pyroxenites to strongly light REE (LREE)-enriched in type 2 and 3 pyroxenites. Particularly high CaO/Al 2 O 3 ratios (2·2–11·3) and the selective enrichment of large ion lithophile elements (LILE) over high field strength elements (HFSE) in Cabo Ortegal pyroxenites suggest the generation of Ca-rich picritic–boninitic parental melts via low-degree, second-stage melting of a refractory lherzolite at 〈2 GPa, following percolation of slab-derived fluids and/or carbonatite melts. Pyroxenites and their host peridotites record high-temperature deformation followed by the development of sheath folds and mylonites. Peak metamorphism was then reached under eclogite-facies conditions (1·6–1·8 GPa and 780–800°C) as recorded by undeformed garnet coronas around spinel. We suggest that this episode corresponds to the delamination of an arc root owing to gravitational instabilities arising from the presence of abundant pyroxenites within mantle harzburgites. Retrograde metamorphism and hydration under amphibolite-facies conditions were recorded by abundant post-kinematic amphibole, which corresponds to the exhumation of the arc root after its intrusion into a subduction zone. The Cabo Ortegal Complex thus preserves a unique section of delaminated arc root, providing evidence for the significant role of melt–peridotite interaction during the differentiation of primitive arc magmas at depth.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-11-21
    Description: To decipher the petrogenesis of chromitites from the Moho Transition Zone of the Cretaceous Oman ophiolite, we carried out detailed scanning electron microscope and electron microprobe investigations of ~500 silicate and chromite inclusions and their chromite hosts, and oxygen isotope measurements of seven chromite and olivine fractions from nodular, disseminated, and stratiform ore bodies and associated host dunites of the Maqsad area, Southern Oman. The results, coupled with laboratory homogenization experiments, allow several multiphase and microcrystal types of the chromite-hosted inclusions to be distinguished. The multiphase inclusions are composed of micron-size (1–50 μm) silicates (with rare sulphides) entrapped in high cr-number [100Cr/(Cr + Al) up to 80] chromite. The high cr-number chromite coronas and inclusions are reduced (oxygen fugacity, f O2 , of ~3 log units below the quartz–fayalite–magnetite buffer, QFM). The reduced chromites, which crystallized between 600 and 950°C at subsolidus conditions, were overgrown by more oxidized host chromite ( f O2 QFM) in association with microcrystal inclusions of silicates (plagioclase An 86 , clinopyroxene, and pargasite) that were formed between 950 and 1050°C at 200 MPa from a hydrous hybrid mid-ocean ridge basalt (MORB) melt. Chromium concentration profiles through the chromite coronas, inclusions, and host chromites indicate non-equilibrium fractional crystallization of the chromitite system at fast cooling rates (up to ~0·1°C a – 1 ). Oxygen isotope compositions of the chromite grains imply involvement of a mantle protolith (e.g. serpentinite and serpentinized peridotite) altered by seawater-derived hydrothermal fluids in an oceanic setting. Our findings are consistent with a three-stage model of chromite formation involving (1) mantle protolith alteration by seawater-derived hydrothermal fluids yielding serpentinites and serpentinized harzburgites, which were probably the initial source of chromium, (2) subsolidus crystallization owing to prograde metamorphism, followed by (3) assimilation and fractional crystallization of chromite from water-saturated MORB. This study suggests that the metamorphic protolith assimilation occurring at the Moho level may dramatically affect MORB magma chemistry and lead to the formation of economic chromium deposits.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-12-27
    Description: The contact between mantle peridotite and gabbro from the lower oceanic crust is usually underlined by a horizon of dunite. The origin of this dunitic transition zone (DTZ) is still debated. It is viewed either as a pile of cumulus olivine from high-MgO melts, or as former mantle peridotite pervasively percolated by melts undersaturated with pyroxene (e.g., as mid-oceanic ridge basalts [MORBs] at low pressure), and transformed into dunite. We show that the two hypotheses are not mutually exclusive, although they do not account for the same parts of the DTZ. We determined a petrological profile through a 330-m-thick DTZ that developed at the top of a mantle diapir in the Oman ophiolite. The lowermost 280 m have a reactional origin: olivine and Cr-spinel record the complex percolation and interaction history between mantle peridotite and MORB. In the uppermost 50 m, chemical trends become consistent with a cumulus origin of the dunite, olivine crystallization being a prelude to the crystallization of the overlying gabbros. The DTZ develops largely in response to melt-rock reaction, consistent with the "reactive filter" hypothesis, but the proportion of cumulate dunite is high enough to require parent melts with a significantly higher Mg content than the most primitive MORB erupted on the seafloor.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-12
    Description: Determining which petrological processes build the mantle-crust dunitic transition zone (DTZ) in oceanic spreading settings has a direct impact on our understanding of thermal and chemical transfers on Earth. We report on understated but widespread mineral assemblages present in the DTZ at the top of a mantle diapir (Oman ophiolite), including pargasite, grossular, and pyroxenes of peculiar composition. These minerals are present interstitially between olivines and as inclusions in the disseminated chromite grains, indicating that they are early, high-temperature features. They call for hybridization between the mid-oceanic ridge basalt melts that fed the crustal section and supercritical water saturated with silica. Our synoptic survey (~300 samples collected along 11 cross sections) demonstrates that the DTZ was pervasively infiltrated by such hybrid melts and that the abundance of their crystallization products increases upsection, likely in response to increasing supply of water and decreasing temperature. This indicates that water is involved in the reaction leading to the transformation of mantle harzburgite into dunite in the DTZ. On the basis of field evidence, a hydrothermal origin of the water is a reasonable hypothesis.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...