GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
Years
  • 1
    Publication Date: 2014-01-14
    Description: Long-term dynamics of selection (plenter) forests and corresponding virgin forests in NW Balkan countries (Slovenia, Croatia, Serbia, Bosnia and Herzegovina and Montenegro) were examined by assessing changes in diameter structure, stand volume and tree species composition. The parameters were aggregated at the landscape spatial scale, and the intensity of changes in diameter structure and tree species composition was measured by the index of dissimilarity. It was hypothesized that structure and composition of selection forests and virgin forests remained rather stable over several decades. Our study revealed pronounced dynamics in the observed parameters. However, these changes were divergent; in most study areas, increases of stand volume and large-diameter trees were observed, and in selection forests, the proportion of silver fir in the total stand volume decreased in three study areas and increased in two. Changes in diameter structure and tree species composition of the virgin forests were relatively less pronounced. In selection forests, an increasing proportion of mid-shade-tolerant Norway spruce and a constant proportion of light demanding sycamore, which is almost absent in virgin forests, were observed. The great capacity of the selection system to create stands of different structure and composition may be an important advantage in increasingly unpredictable economic, social and environmental conditions.
    Print ISSN: 0015-752X
    Electronic ISSN: 1464-3626
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-15
    Description: The terrestrial forest carbon pool is poorly quantified, in particular in regions with low forest inventory capacity. By combining multiple satellite observations of synthetic aperture radar (SAR) backscatter around the year 2010, we generated a global, spatially explicit dataset of above-ground live biomass (AGB; dry mass) stored in forests with a spatial resolution of 1 ha. Using an extensive database of 110 897 AGB measurements from field inventory plots, we show that the spatial patterns and magnitude of AGB are well captured in our map with the exception of regional uncertainties in high-carbon-stock forests with AGB 〉250 Mg ha−1, where the retrieval was effectively based on a single radar observation. With a total global AGB of 522 Pg, our estimate of the terrestrial biomass pool in forests is lower than most estimates published in the literature (426–571 Pg). Nonetheless, our dataset increases knowledge on the spatial distribution of AGB compared to the Global Forest Resources Assessment (FRA) by the Food and Agriculture Organization (FAO) and highlights the impact of a country's national inventory capacity on the accuracy of the biomass statistics reported to the FRA. We also reassessed previous remote sensing AGB maps and identified major biases compared to inventory data, up to 120 % of the inventory value in dry tropical forests, in the subtropics and temperate zone. Because of the high level of detail and the overall reliability of the AGB spatial patterns, our global dataset of AGB is likely to have significant impacts on climate, carbon, and socio-economic modelling schemes and provides a crucial baseline in future carbon stock change estimates. The dataset is available at https://doi.org/10.1594/PANGAEA.894711 (Santoro, 2018).
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-11
    Description: Over the past decade, several global maps of above-ground biomass (AGB) have been produced, but they exhibit significant differences that reduce their value for climate and carbon cycle modelling, and also for national estimates of forest carbon stocks and their changes. The number of such maps is anticipated to increase because of new satellite missions dedicated to measuring AGB. Objective and consistent methods to estimate the accuracy and uncertainty of AGB maps are therefore urgently needed. This paper develops and demonstrates a framework aimed at achieving this. The framework provides a means to compare AGB maps with AGB estimates from a global collection of National Forest Inventories and research plots that accounts for the uncertainty of plot AGB errors. This uncertainty depends strongly on plot size, and is dominated by the combined errors from tree measurements and allometric models (inter-quartile range of their standard deviation (SD) = 30–151 Mg ha−1). Estimates of sampling errors are also important, especially in the most common case where plots are smaller than map pixels (SD = 16–44 Mg ha−1). Plot uncertainty estimates are used to calculate the minimum-variance linear unbiased estimates of the mean forest AGB when averaged to 0.1∘. These are used to assess four AGB maps: Baccini (2000), GEOCARBON (2008), GlobBiomass (2010) and CCI Biomass (2017). Map bias, estimated using the differences between the plot and 0.1∘ map averages, is modelled using random forest regression driven by variables shown to affect the map estimates. The bias model is particularly sensitive to the map estimate of AGB and tree cover, and exhibits strong regional biases. Variograms indicate that AGB map errors have map-specific spatial correlation up to a range of 50–104 km, which increases the variance of spatially aggregated AGB map estimates compared to when pixel errors are independent. After bias adjustment, total pantropical AGB and its associated SD are derived for the four map epochs. This total becomes closer to the value estimated by the Forest Resources Assessment after every epoch and shows a similar decrease. The framework is applicable to both local and global-scale analysis, and is available at https://github.com/arnanaraza/PlotToMap. Our study therefore constitutes a major step towards improved AGB map validation and improvement.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-20
    Description: The backscattered power recorded by a spaceborne scatterometer operating at C-band is sensitive to land surface parameters and is operationally used by some global remote sensing services, e.g., to estimate soil moisture. The estimation of forest variables, in particular above-ground biomass (AGB), from scatterometer data instead was seldom explored. Given the availability of multi-decadal sets of scatterometer observations from space, it is of interest to address the contribution of C-band scatterometer data to the quantification of carbon stocks stored in forests even if the spatial resolution of spaceborne scatterometers is very coarse. In this paper, we investigated the prospects of AGB estimation using backscatter observations by the MetOp Advanced SCATterometer (ASCAT) with a spatial resolution of 0.25°. For this study, ASCAT observations acquired in 2010 were used to be contemporary with AGB datasets selected to benchmark the performance of the estimation. A Water Cloud Model that integrates two allometric equations derived from spaceborne LiDAR data reproduced the relationship between observations of radar backscatter as a function of AGB. Estimates of AGB from individual observations were then combined with a weighted average to reduce uncertainties. Finally, a correction was introduced to compensate for the offset introduced by sloped terrain and surfaces not covered by woody vegetation on the AGB estimate of a pixel. Uncertainties associated with the scatterometer observations, and the modelling framework were propagated to obtain per-pixel values of the standard deviation of an AGB estimate. The proposed method explains much of the variance in AGB estimates when compared to measurements from inventory data (R2 = 0.72) and generated unbiased estimates globally (bias: −3.3 Mg⋅ha−1). Nonetheless, the discrepancy between estimated and plot-based AGB values tended to increase for decreasing biomass level from 20% to 60% of the reference AGB level. A further assessment related to global stocks indicated that the value estimated from the scatterometer dataset (596 Pg, 95% of which 563 Pg stored in forest land) was in line with two published estimates based on forest inventory data only (571 Pg and 600 Pg, respectively). Despite the coarse spatial resolution, our results indicate that C-band scatterometer observations from space can contribute to the characterization of terrestrial biomass pools. The record of observations starting in the early 1990s may provide an unprecedented way to look at long-term forest dynamics as well as to constrain the strength of carbon-climate cycle feedback simulated by Earth System models.
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...