GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Remote sensing. ; Plant science. ; Ecosystems. ; Biodiversity. ; Botany. ; Plant ecology. ; Environmental monitoring. ; Geographic information systems. ; Biotic communities.
    Description / Table of Contents: Chapter1. The use of remote sensing to enhance biodiversity monitoring & detection—a critical challenge for the 21st century. - Chapter2. Applying Remote Sensing to Biodiversity Science -- Chapter3. Scaling Functional Traits from Leaves to Canopies -- Chapter4. The Laegeren Site: An Augmented Forest Laboratory -- Chapter5. Lessons Learned from Spectranomics: Wet Tropical Forests -- Chapter6. Remote Sensing for Early, Detailed, and Accurate Detection of Forest Disturbance and Decline for Protection of Biodiversity -- Chapter7. Linking Leaf Spectra to the Plant Tree of Life -- Chapter8. Linking Foliar Traits to Belowground Processes -- Chapter9. Linking Foliar Traits to Belowground Processes -- Chapter9. Using Remote Sensing for Modeling and Monitoring Species Distributions -- Chapter10. Remote Sensing of Geodiversity as a Link to Biodiversity -- Chapter11. Predicting Patterns of Plant Diversity and Endemism in the Tropics Using Remote Sensing Data: A Study Case From the Brazilian Atlantic Forest -- Chapter12. Remote Detection of Invasive Alien Species -- Chapter13. A Range of Earth Observation Techniques for Assessing Plant Diversity -- Chapter14. How the Optical Properties of Leaves Modify the Absorption and Scattering of Energy and Enhance Leaf Functionality -- Chapter15. Spectral Field Campaigns: Planning and Data Collection -- Chapter16. Consideration of Scale in Remote Sensing of Biodiversity -- Chapter17. Integrating Biodiversity, Remote Sensing, and Auxiliary Information for the Study of Ecosystem Functioning and Conservation at Large Spatial Scales -- Chapter18. Essential Biodiversity Variables: Integrating in Situ Observations and Remote Sensing Through Modeling -- Chapter19. Prospects and pitfalls for spectroscopic remote sensing of biodiversity at the global scale -- Chapter20. Epilogue – Towards a Global Biodiversity Monitoring System. .
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XXII, 581 p. 130 illus., 110 illus. in color.)
    ISBN: 9783030331573
    Series Statement: Springer eBook Collection
    Language: English
    Note: Open Access
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham : Springer International Publishing AG
    Keywords: Electronic books
    Description / Table of Contents: Intro -- Foreword -- Contents -- About the Authors -- About the Editors -- Chapter 1: The Use of Remote Sensing to Enhance Biodiversity Monitoring and Detection: A Critical Challenge for the Twenty-First Century -- 1.1 Introduction -- 1.2 Why a Focus on Plant Diversity? -- 1.3 The Promise of Remote Sensing to Detect Plant Diversity -- 1.4 The Contents of the Book -- 1.5 The Origins of the Book -- References -- Chapter 2: Applying Remote Sensing to Biodiversity Science -- 2.1 What Is Biodiversity? -- 2.2 The Hierarchical Nature of Biodiversity -- 2.3 The Making of a Phenotype: Phylogeny, Genes, and the Environment -- 2.4 Patterns in Plant Diversity -- 2.5 Functional Traits, Community Assembly, and Evolutionary Legacy Effects on Ecosystems -- 2.5.1 Functional Traits and the Leaf Economic Spectrum -- 2.5.2 Plant Traits, Community Assembly, and Ecosystem Function -- 2.5.3 Phylogenetic, Functional, and Spectral Dispersion in Communities -- 2.6 Evolutionary Legacy Effects on Ecosystems -- 2.7 Quantifying Multiple Dimensions of Biodiversity -- 2.7.1 The Spatial Scale of Diversity: Alpha, Beta, and Gamma Diversity -- 2.7.2 Taxonomic Diversity -- 2.7.3 Phylogenetic Diversity -- 2.7.4 Functional Diversity -- 2.7.5 Spectral Diversity -- 2.7.6 Beta Diversity Metrics -- 2.8 Links Between Plant Diversity, Other Trophic Levels, and Ecosystem Functions -- 2.9 Incorporating Spectra into Relationships Between Biodiversity and Ecosystem Function -- 2.10 Links Between Biodiversity and Ecosystem Services -- 2.11 Trade-Offs Between Biodiversity and Ecosystem Services -- References -- Chapter 3: Scaling Functional Traits from Leaves to Canopies -- 3.1 Introduction -- 3.1.1 Plant Traits and Functional Diversity -- 3.1.2 Historical Advances in Remote Sensing of Vegetation -- 3.1.3 Remote Sensing as a Tool for Scaling and Mapping Plant Traits.
    Type of Medium: Online Resource
    Pages: 1 online resource (594 pages)
    ISBN: 9783030331573
    Language: English
    Note: Description based on publisher supplied metadata and other sources
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 11 (2016): 034004, doi:10.1088/1748-9326/11/3/034004.
    Description: Residential yards across the US look remarkably similar despite marked variation in climate and soil, yet the drivers of this homogenization are unknown. Telephone surveys of fertilizer and irrigation use and satisfaction with the natural environment, and measurements of inherent water and nitrogen availability in six US cities (Boston, Baltimore, Miami, Minneapolis-St. Paul, Phoenix, Los Angeles) showed that the percentage of people using irrigation at least once in a year was relatively invariant with little difference between the wettest (Miami, 85%) and driest (Phoenix, 89%) cities. The percentage of people using fertilizer at least once in a year also ranged narrowly (52%–71%), while soil nitrogen supply varied by 10x. Residents expressed similar levels of satisfaction with the natural environment in their neighborhoods. The nature and extent of this satisfaction must be understood if environmental managers hope to effect change in the establishment and maintenance of residential ecosystems.
    Description: We would like to acknowledge the MacroSystems Biology Program, in the Emerging Frontiers Division of the Biological Sciences Directorate at NSF for support. The 'Ecological Homogenization of Urban America' project was supported by a series of collaborative grants from this program (EF-1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, 121238320). The work arose from research funded by grants from the NSF Long Term Ecological Research Program supporting work in Baltimore (DEB-0423476), Phoenix (BCS-1026865, DEB-0423704 and DEB-9714833), Plum Island (Boston) (OCE-1058747 and 1238212), Cedar Creek (Minneapolis-St. Paul) (DEB-0620652) and Florida Coastal Everglades (Miami) (DBI-0620409).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Landscape and Urban Planning 165 (2017): 54-63, doi:10.1016/j.landurbplan.2017.05.004.
    Description: Residential lawns are highly managed ecosystems that occur in urbanized landscapes across the United States. Because they are ubiquitous, lawns are good systems in which to study the potential homogenizing effects of urban land use and management together with the continental-scale effects of climate on ecosystem structure and functioning. We hypothesized that similar homeowner preferences and management in residential areas across the United States would lead to low plant species diversity in lawns and relatively homogeneous vegetation across broad geographical regions. We also hypothesized that lawn plant species richness would increase with regional temperature and precipitation due to the presence of spontaneous, weedy vegetation, but would decrease with household income and fertilizer use. To test these predictions, we compared plant species composition and richness in residential lawns in seven U.S. metropolitan regions. We also compared species composition in lawns with understory vegetation in minimally-managed reference areas in each city. As expected, the composition of cultivated turfgrasses was more similar among lawns than among reference areas, but this pattern also held among spontaneous species. Plant species richness and diversity varied more among lawns than among reference areas, and more diverse lawns occurred in metropolitan areas with higher precipitation. Native forb diversity increased with precipitation and decreased with income, driving overall lawn diversity trends with these predictors as well. Our results showed that both management and regional climate shaped lawn species composition, but the overall homogeneity of species regardless of regional context strongly suggested that management was a more important driver.
    Description: This research was supported by the Macrosystems Biology Program in the Emerging Frontiers Division of the Biological Sciences Directorate at the National Science Foundation (NSF) under grants EF-1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, and 121238320.
    Keywords: Homogenization ; Lawn ; Residential yards ; Species composition ; Turfgrass
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © Ecological Society of America, 2014. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 12 (2014): 74-81, doi:10.1890/120374.
    Description: A visually apparent but scientifically untested outcome of land-use change is homogenization across urban areas, where neighborhoods in different parts of the country have similar patterns of roads, residential lots, commercial areas, and aquatic features. We hypothesize that this homogenization extends to ecological structure and also to ecosystem functions such as carbon dynamics and microclimate, with continental-scale implications. Further, we suggest that understanding urban homogenization will provide the basis for understanding the impacts of urban land-use change from local to continental scales. Here, we show how multi-scale, multi-disciplinary datasets from six metropolitan areas that cover the major climatic regions of the US (Phoenix, AZ; Miami, FL; Baltimore, MD; Boston, MA; Minneapolis–St Paul, MN; and Los Angeles, CA) can be used to determine how household and neighborhood characteristics correlate with land-management practices, land-cover composition, and landscape structure and ecosystem functions at local, regional, and continental scales.
    Description: We thank the MacroSystems Biology Program in the Emerging Frontiers Division of the Biological Sciences Directorate at NSF for support. The “Ecological Homogenization of Urban America” project was supported by a series of collaborative grants from this program (EF-1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, 121238320). The work arose from research funded by grants from the NSF Long Term Ecological Research Program supporting work in Baltimore (DEB-0423476), Phoenix (BCS-1026865, DEB-0423704 and DEB-9714833), Plum Island (Boston) (OCE-1058747 and 1238212), Cedar Creek (Minneapolis–St Paul) (DEB-0620652), and Florida Coastal Everglades (Miami) (DBI-0620409).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 9 (2018): e02105, doi:10.1002/ecs2.2105.
    Description: Urban ecosystems are widely hypothesized to be more ecologically homogeneous than natural ecosystems. We argue that urban plant communities assemble from a complex mix of horticultural and regional species pools, and evaluate the homogenization hypothesis by comparing cultivated and spontaneously occurring urban vegetation to natural area vegetation across seven major U.S. cities. There was limited support for homogenization of urban diversity, as the cultivated and spontaneous yard flora had greater numbers of species than natural areas, and cultivated phylogenetic diversity was also greater. However, urban yards showed evidence of homogenization of composition and structure. Yards were compositionally more similar across regions than were natural areas, and tree density was less variable in yards than in comparable natural areas. This homogenization of biodiversity likely reflects similar horticultural source pools, homeowner preferences, and management practices across U.S. cities.
    Description: National Science Foundation Macrosystems Biology Program in the Emerging Frontiers Division of the Biological Sciences Directorate and Long Term Ecological Research Program. Grant Numbers: EF‐1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, 121238320, DEB‐0423476, BCS‐1026865, DEB‐0423704, DEB‐9714833, OCE‐1058747, OCE‐1238212, DEB‐0620652, DBI‐0620409
    Keywords: Aridity ; Ecosystems services ; Functional traits ; Phylogenetic diversity ; Plants ; Urban ecology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © Ecological Society of America, 2019. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Trammell, T. L. E., Pataki, D. E., Still, C. J., Ehleringer, J. R., Avolio, M. L., Bettez, N., Cavender-Bares, J., Groffman, P. M., Grove, M., Hall, S. J., Heffernan, J., Hobbie, S. E., Larson, K. L., Morse, J. L., Neill, C., Nelson, K. C., O'Neil-Dunne, J., Pearse, W. D., Chowdhury, R. R., Steele, M., & Wheeler, M. M. Climate and lawn management interact to control C4 plant distribution in residential lawns across seven U.S. cities. Ecological Applications, 29(4), (2019): e01884, doi: 10.1002/eap.1884.
    Description: In natural grasslands, C4 plant dominance increases with growing season temperatures and reflects distinct differences in plant growth rates and water use efficiencies of C3 vs. C4 photosynthetic pathways. However, in lawns, management decisions influence interactions between planted turfgrass and weed species, leading to some uncertainty about the degree of human vs. climatic controls on lawn species distributions. We measured herbaceous plant carbon isotope ratios (δ13C, index of C3/C4 relative abundance) and C4 cover in residential lawns across seven U.S. cities to determine how climate, lawn plant management, or interactions between climate and plant management influenced C4 lawn cover. We also calculated theoretical C4 carbon gain predicted by a plant physiological model as an index of expected C4 cover due to growing season climatic conditions in each city. Contrary to theoretical predictions, plant δ13C and C4 cover in urban lawns were more strongly related to mean annual temperature than to growing season temperature. Wintertime temperatures influenced the distribution of C4 lawn turf plants, contrary to natural ecosystems where growing season temperatures primarily drive C4 distributions. C4 cover in lawns was greatest in the three warmest cities, due to an interaction between climate and homeowner plant management (e.g., planting C4 turf species) in these cities. The proportion of C4 lawn species was similar to the proportion of C4 species in the regional grass flora. However, the majority of C4 species were nonnative turf grasses, and not of regional origin. While temperature was a strong control on lawn species composition across the United States, cities differed as to whether these patterns were driven by cultivated lawn grasses vs. weedy species. In some cities, biotic interactions with weedy plants appeared to dominate, while in other cities, C4 plants were predominantly imported and cultivated. Elevated CO2 and temperature in cities can influence C3/C4 competitive outcomes; however, this study provides evidence that climate and plant management dynamics influence biogeography and ecology of C3/C4 plants in lawns. Their differing water and nutrient use efficiency may have substantial impacts on carbon, water, energy, and nutrient budgets across cities.
    Description: This research was funded by a series of collaborative grants from the U.S. National Science Foundation Macrosystems Biology Program (EF‐1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, 121238320). The authors thank La'Shaye Ervin, William Borrowman, Moumita Kundu, and Barbara Uhl for field and laboratory assistance.
    Keywords: C4 plant distribution ; lawns ; macroecology ; plant δ13C ; residential ; urban ; yard management
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...