GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Chemistry, Forensic. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (320 pages)
    Edition: 1st ed.
    ISBN: 9783031088346
    Series Statement: Soil Forensics Series
    DDC: 549
    Language: English
    Note: Intro -- Preface -- Contents -- Contributors -- Chapter 1: Optical Microscopy Applied to Forensics -- 1.1 Stereoscopic Microscope: Instrumentation and Analysis Procedures -- 1.1.1 Magnification -- 1.1.2 Lighting System -- 1.1.3 Diagnostic Characteristics for the Study of Various Materials -- 1.2 Polarized Light Microscope: Instrumentation and Analysis Procedures -- 1.2.1 Sample Preparation -- 1.2.2 Different Light Arrangements and Optical Diagnostic Characteristics of Anisotropic Materials -- 1.2.3 Semi-quantitative Analysis -- 1.3 Applications of Optical Microscopy to Forensic Sciences -- 1.3.1 Minerals and Rocks -- 1.3.2 Pedological Materials -- 1.3.2.1 Diagnostic Physical Characteristics for the Study of Soil Particles -- 1.3.2.2 Organic and Anthropogenic Fragments in Forensic Soil -- 1.3.3 Precious Stones and Gems -- 1.3.4 Precious Metals -- 1.3.5 Building Materials -- References -- Chapter 2: X-ray Diffractometry in Forensic Science -- 2.1 X-Rays: Characteristics, Production, Analytical Procedures -- 2.2 X-Ray Diffraction -- 2.3 Collecting and Analyzing Data -- 2.4 Phase Identification -- 2.5 Sample Preparation: Good and Bad Practices -- 2.6 Preferred Orientation in Clay Minerals -- 2.7 Quantitative Analysis -- 2.7.1 Full-Pattern Fitting/Rietveld Method -- 2.8 Environmental Crimes: Evaluation of the Presence of Asbestos Minerals in Massive Samples -- 2.9 Cultural Heritage Crimes: Identification of the Geological Provenance of Geoarchaeological Materials -- 2.10 Concluding Remarks -- References -- Chapter 3: Scanning Electron Microscopy (SEM) in Forensic Geoscience -- 3.1 Scanning Electron Microscopy -- 3.2 The Signals of an SEM -- 3.3 The Structure of an SEM -- 3.4 Electron Microanalysis -- 3.5 Specimen Preparation -- 3.6 Automated Mineralogy -- 3.7 Applications of SEM in Forensic Geoscience. , 3.7.1 Applications of Manual Scanning Electron Microscopy and Microanalysis -- 3.7.2 Applications of Automated Mineralogy -- References -- Chapter 4: Infrared Spectroscopy and Application to Forensics -- 4.1 Theoretical Background -- 4.1.1 The Infrared (IR) Radiation -- 4.1.2 The Absorption of IR Radiation -- 4.1.3 The Harmonic Oscillator Model -- 4.1.4 Transition Moment and General Selection Rule in IR Spectroscopy -- 4.1.5 The Normal Vibration Modes of Molecules -- 4.1.6 Transmittance, Absorbance and Beer-Lambert's Law -- 4.1.7 The IR Spectrum: Position, Intensity and Shape of Absorption Bands -- 4.1.8 Features of the IR Spectrum and Their Interpretation -- 4.2 Instruments and Methodologies -- 4.2.1 Analysis in Reflectance -- 4.2.2 Quantitative Analysis -- 4.2.3 FTIR Microscopy and Imaging -- 4.3 Sample Preparation -- 4.3.1 Powders -- 4.3.2 Single Crystals, Doubly Polished Slabs -- 4.4 Applications in Forensics -- 4.4.1 Fingerprinting -- 4.4.2 Qualitative Analysis of Discrete Features in the Spectral Signal -- 4.4.3 Quantitative Analysis -- 4.4.4 Spatial Analysis (Imaging) -- References -- Chapter 5: Raman Spectroscopy and Forensic Mineralogy -- 5.1 Raman Spectroscopy: Basic Notions -- 5.1.1 The Raman Effect -- 5.1.2 Raman Spectrum -- 5.1.3 Raman Spectroscopy: From Past to Present -- 5.1.4 Unconventional Techniques Based on Raman Spectroscopy -- 5.2 Applications of Raman Spectroscopy: Gemmological Materials -- 5.2.1 Raman Spectroscopy in Gemmology: Advantages and Disadvantages -- 5.2.2 Identification of Gems Through Raman Spectroscopy -- 5.2.3 Analytical Issues -- 5.2.4 Portable or Bench Top Spectrometer? -- 5.3 Other Applications of Raman Spectroscopy: Inks and Pigments, Explosives, Dangerous Minerals -- 5.3.1 Inks and Pigments -- 5.3.2 Explosives -- 5.3.3 Dangerous Minerals for Human Health: Asbestos and Crystalline Silica. , 5.4 Concluding Remarks -- References -- Chapter 6: ICP-MS - Fundamentals and Application to Forensic Science -- 6.1 ICP-MS - Principles -- 6.1.1 Analytical Steps -- 6.1.2 Interference Issue -- 6.2 Laser Ablation Coupled with ICP-MS (LA-ICP-MS) -- 6.3 Sample Preparation and Analytical Phase -- 6.3.1 Analytical Phase -- 6.3.2 LA-ICP-MS -- 6.4 Forensic Applications -- 6.4.1 Glass -- 6.4.2 Soils -- 6.4.3 Biological Tissues -- References -- Chapter 7: Simultaneous Thermal Analysis (STA): A Powerful Tool for Forensic Investigation of Geomaterials -- 7.1 Thermoanalytic Techniques and Instrumentation -- 7.1.1 Thermogravimetric Analysis (TGA) -- 7.1.2 Differential Thermal Analysis (DTA) -- 7.1.3 Differential Scanning Calorimetry (DSC) -- 7.1.4 Hyphenated Techniques -- 7.2 Sample Preparation -- 7.3 Thermal Behavior of Minerals and Their Mixtures -- 7.3.1 Clay Minerals -- 7.3.2 Zeolites -- 7.3.3 Sulphates -- 7.3.4 Carbonates -- 7.3.5 Halides -- 7.3.6 Other Minerals -- 7.3.7 Soils -- 7.3.8 Rocks -- 7.4 Applications of Thermal Analyses to Forensic Sciences -- References -- Chapter 8: X-Ray Fluorescence: Chemical Characterization of Materials by X-Ray Spectrometry -- 8.1 Processes That Can Generate X-Rays -- 8.2 The Spectrum of X-Rays -- 8.3 Absorption of X-Rays -- 8.4 Detection and Measurement of X-Rays -- 8.4.1 X-Ray Detection by Energy Dispersion (ED = Energy Dispersive) -- 8.4.2 X-Ray Detection by Wavelength Dispersion (WD = Wavelength Dispersive) -- 8.5 XRF Qualitative Analysis -- 8.6 XRF Quantitative Analysis -- 8.7 Use of Portable Equipment -- 8.8 Preparation of the Samples -- 8.9 Examples of Use of the XRF in Forensic Investigations -- 8.9.1 Materials for Industry -- 8.9.2 Precious Materials (Metals and Stones) and Cultural Heritage Materials -- 8.9.3 Characterization of Paint, Pigments and Inks. , 8.9.4 Analysis of Evidence in Criminal Scenes in Forensic Anthropology and Archaeology -- 8.9.5 Analysis of Soils, Earth Materials and Environmental Samples -- References -- Chapter 9: Isotopic Analysis Techniques Applied to Forensics: New Frontiers of Isotope Geochemistry -- 9.1 Sample Preparation -- 9.1.1 Preparation Techniques for Inorganic Samples -- 9.1.1.1 Extraction with a Solvent -- 9.1.1.2 Dissolution with Mineral Acids -- 9.1.1.3 Fusion with a Flux -- 9.1.2 Preparation Techniques for Organic Samples -- 9.1.2.1 Teeth and Bones -- 9.1.2.2 Hair -- 9.1.2.3 Soil -- 9.1.2.4 Plants -- 9.1.2.5 Food -- 9.1.2.6 Beverages -- 9.1.2.7 Extraction of a Gas from a Solid -- 9.1.3 Chromatographic Separation Techniques -- 9.1.3.1 Liquid Phase Chromatographic Separation -- 9.1.3.2 Gas Phase Chromatographic Separation -- 9.2 Instrumentation -- 9.2.1 Inductively Coupled Plasma-Mass Spectrometry -- 9.2.1.1 Principles and Instrumentation -- 9.2.1.2 Measurement Procedures -- 9.2.2 Thermal Ionization Mass Spectrometry - Solid Source Mass Spectrometers -- 9.2.2.1 Principles and Instrumentation -- 9.2.2.2 Measurement Procedures -- 9.2.3 Thermal Ionization Mass Spectrometry - Gas Source Mass Spectrometry -- 9.2.3.1 Principles and Instrumentation -- 9.2.3.2 Measurement Procedures -- 9.2.4 Alpha and Gamma Spectrometry -- 9.3 Application of Isotope Forensics -- 9.3.1 Placement of a Suspect at the Crime Scene -- 9.3.2 Human Provenancing -- 9.3.3 Drugs -- 9.3.4 Explosives -- 9.3.5 Radioactive Materials -- 9.3.6 Environmental Forensics -- 9.3.7 Food Adulteration -- References -- Chapter 10: Image Analysis in Forensic Mineralogy -- 10.1 Digital Images and Acquisition Systems -- 10.2 Image Processing -- 10.3 Measurements -- 10.4 Fields of Application of Image Analysis in Forensic Geology -- 10.4.1 Applications on Macroscopic Images. , 10.4.2 Applications on Images Acquired in Stereomicroscopy -- 10.4.3 Applications on Images Acquired in Optical Microscopy -- 10.4.4 Applications on Images Acquired in Scanning Electron Microscopy -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Mineralogy. ; Forensic sciences. ; Soil science.
    Description / Table of Contents: 1. Optical microscopy applied to forensics -- 2. X-ray powder diffraction (XRPD -- 3. Scanning Electron Microscopy, Electron Microanalysis and automated SEM for forensic science -- 4. Infrared spectroscopy -- 5. Raman spectroscopy and forensic mineralogy -- 6. ICP-MS for forensic science -- 7. Simultaneous Thermal Analysis (STA): a powerful tool for forensic purposes -- 8. X-ray fluorescence -- 9. Isotopic analysis techniques applied in forensics. New frontiers of isotope geochemistry -- 10. Image analysis in forensic mineralogy.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XI, 311 p. 1 illus.)
    Edition: 1st ed. 2023.
    ISBN: 9783031088346
    Series Statement: Soil Forensics
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The study proposes a model by which a thick succession of volcanic tuffs can be zeolitized by alteration of pyroclastic material in the presence of sufficient eruptive water and at temperatures close to water vapour condensation. In the case of phreatomagmatic products, the model simplifies interpretation of problematic deposits that exhibit pronounced vertical and lateral variation in lithification grade. A major feature of the model is that thick zeolitized tuffs can be formed during emplacement of pyroclastic products, in marked contrast to later alteration in an open hydrologic system. Geological, volcanological and mineralogical data for the Neapolitan Yellow Tuff, a widespread trachytic pyroclastic deposit outcropping around Campi Flegrei (Southern Italy), have been used to infer the physico-chemical conditions that determined mineral genesis. This tuff shows a reduction in lithification grade towards the base, top and with distance from the vent and very variable zeolitization within the lithified portion. We suggest that during initial emplacement the erupted products chilled against the ground, inhibiting zeolite crystallization. During rapid deposition of the thick, wet succession thermal insulation allowed the persistence of elevated temperatures for a time sufficient for enhancement of hydration-dissolution processes in the volcanic glass. The highly reactive alkali-trachytic glass quickly buffered the acid pH of the system, favouring phillipsite crystallization followed by chabazite nucleation. The variable zeolite content reflects fluctuating emplacement conditions (e.g. changes in water content and temperature). Cooling of the upper and relatively thin distal deposits inhibited the zeolitization process, thereby preserving the primary unlithified deposit.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-21
    Description: A Roman luxury villa (1st century BC) was discovered in the town of Positano, in the Sorrento peninsula (Campania region, southern Italy). Despite being more than 20 km away from Vesuvius, the villa was buried under almost overall 20 meters (total thickness) of pyclastic materials of the Plinian eruption of 79 AD, which destroyed Pompeii and Herculaneum towns. The exceptional level of conservation of this residential complex is due to the peculiar burial process, which determined the excellent state of preservation of both the fresco decorations (Fourth Style) and all other artefacts (masonries, plasters, tiles, furnishing remains, wooden elements, kitchenware, glazed oil lamps, bronze vessels and other metallic findings, etc.). This study presents the results of a multi-analytical archaeometric analysis of plasters, fresco pigments and roof tiles, aimed at identifying their mineralogical and petrographic nature and the provenance of raw materials. Constraints to the geoarchaeological landscape of the Positano area are also given. The analyzed plasters are mainly lime-based, usually with the addition of an aggregate. The anchoring layer is made by a volcanic component, characterized by clinopyroxene, alkali feldspar, garnet, amphibole, biotite and leucite crystals, together with a sedimentary component represented by carbonatic fragments, also with traces of microfossils. The features of plasters confirm the high degree of technological standardization of plasters in classical Roman age. Mineral pigments recognized by preliminary XRD are mainly iron-based for the ochers-red-crimson colors and copper-based for green-blues colors. In the roof tiles two kind of tempers are identified. In three samples a volcanic temper was identified, and represented by clinopyroxene, feldspar, garnet and leucite, whereas the temper of a fourth sample contained pumices with minor amounts of alkali feldspar, clinopyroxene and biotite. The raw materials are of local provenance (Somma-Vesuvius, Phlegraean Fields, Apennine limestones), and the microstructure of the materials are comparable with similar artefacts from Pompeii, Herculaneum and other Roman sites in Campania region. On the basis of geoarchaeological investigations, here reported, it is reasonable to think that there are other unearthed archaeological areas in Positano that will require further study to be properly known.
    Description: Published
    Description: 319-344
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...