GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 33 (2003), S. 273-277 
    ISSN: 1434-6036
    Keywords: PACS. 74.40.+k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.) – 11.15.Ex Spontaneous breaking of gauge symmetries – 74.20.De Phenomenological theories (two-fluid, Ginzburg-Landau, etc.) – 11.15.Tk Other nonperturbative techniques
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: The Gaussian Effective Potential in a fixed transverse unitarity gauge is studied for the static three-dimensional U(1) scalar electrodynamics (Ginzburg-Landau phenomenological theory of superconductivity). In the broken-symmetry phase the mass of the electromagnetic field (inverse penetration depth) and the mass of the scalar field (inverse correlation length) are both determined by solution of the coupled variational equations. At variance with previous calculations, the choice of a fixed unitarity gauge prevents from the occurrence of any unphysical degree of freedom. The theory provides a nice interpolation of the experimental data when approaching the critical region, where the standard mean-field method is doomed to failure.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-26
    Description: The complexity of volcano-hosted hydrothermal systems is such that thorough characterization requires extensive and interdisciplinary work. We use here an integrated multidisciplinary approach, combining geological investigations with hydrogeochemical and soil degassing prospecting, and resistivity surveys, to provide a comprehensive characterization of the shallow structure of the southwestern Ischia's hydrothermal system. We show that the investigated area is characterized by a structural setting that, although very complex, can be schematized in three sectors, namely, the extra caldera sector (ECS), caldera floor sector (CFS), and resurgent caldera sector (RCS). This contrasted structural setting governs fluid circulation. Geochemical prospecting shows, in fact, that the caldera floor sector, a structural and topographic low, is the area where CO2-rich (〉40 cm3/l) hydrothermally mature (log Mg/Na ratios 〈 −3) waters, of prevalently meteoric origin (δ18O 〈 −5.5‰), preferentially flow and accumulate. This pervasive hydrothermal circulation within the caldera floor sector, being also the source of significant CO2 soil degassing (〉150 g m−2 d−1), is clearly captured by electrical resistivity tomography (ERT) and transient electromagnetic (TEM) surveys as a highly conductive (resistivity 〈 3 Ω·m) layer from depths of ~100 m, and therefore within the Mount Epomeo Green Tuff (MEGT) formation. Our observations indicate, instead, that less-thermalized fluids prevail in the extra caldera and resurgent caldera sectors, where highly conductive seawater-like (total dissolved solid, TDS 〉 10,000 mg/l) and poorly conductive meteoric-derived (TDS 〈 4,000 mg/l) waters are observed, respectively. We finally integrate our observations to build a general model for fluid circulation in the shallowest (〈0.5 km) part of Ischia's hydrothermal system.
    Description: Published
    Description: Q07017
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: ERT ; TEM ; Ischia ; fluid geochemistry ; hydrothermal systems ; resurgent caldera ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.05. Models and Forecasts ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Dynamic accumulation chamber methods have been extensively used to estimate the total output of CO2 released from active volcanic area. In order to asses the performance and reliability of a closed dynamic system several tests were carried out with different soil permeabilities and soil CO2 fluxes. A special device was used to create a constant one-dimensional CO2 flux through a soil column with a known permeability. Three permeabilities were investigated, ranging between 3.6 × 10− 2 and 3.5 × 10 μm2, as were several CO2 fluxes (ranging between 1.1 × 10− 6 and 6.3 × 10− 5 kg m− 2 s− 1). The results highlight that the accuracy of soil CO2 flux measurements strictly depends on the soil gas permeability and the soil CO2 flux regimen. Generally chamber measurements underestimate CO2 fluxes at low soil permeability and low soil CO2 fluxes, whereas appreciable overestimations occur for high permeability soil, especially for high soil CO2 fluxes. Other tests carried out with different settings for the measurement device, such as the chamber volume and the flux of the pump used to recirculate air through the chamber and the gas analyzer (recirculation flux), revealed a strong dependence of the closed dynamic chamber measurements on the recirculation flux. Low recirculation fluxes (0.2–0.4 l min− 1) decreased the performance of the measurement system, causing underestimations of the actual soil CO2 flux, whereas higher values (0.6–1.0 l min− 1) resulted in overestimations, especially for elevated soil CO2 fluxes. An empirical equation was deduced to allow accumulation chamber fluxes to be calculated very accurately based on soil gas permeabilities measured in the field.
    Description: Published
    Description: 387-393
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Soil CO2 flux measuraments ; Closed dynamic chamber ; soil gas permeability ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: “An edited version of this paper was published by AGU. Copyright (2009) American Geophysical Union.”
    Description: The properties of polymeric membranes and measurements of gas concentrations are common elements of industrial processes and scientific research. Here we report a methodology whereby pressure measurements inside a closed polymeric membrane tube can be quantitatively related to the composition of the external gas. This approach is founded on the different rates at which the gases permeate into and out of the interior of the polymeric tube. The difference between the amounts of gas entering and leaving the tube triggers a pressure transient. The features of this transient depend on the species of the involved gases and their partial pressures and under certain conditions, allow the concentration of one or more species to be estimated. We outline the theoretical principles behind the proposed methodology and conduct laboratory tests on a device that could be adaptable to continuous measurements of CO2 partial pressure in field applications.
    Description: Published
    Description: Q11005
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: gas concentration measurements ; polymeric membranes ; continuous monitoring ; carbon dioxide ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: A physical model based on the advective–diffusion theory was developed in order to describe the mixing between a deep gas source and the atmosphere. The model was used to predict the isotopic fractionation of carbon in soil CO2. Gas samples were collected at different depths in areas characterized by different geological settings and CO2 fluxes. The relative theoretical and experimental isotopic profiles were compared and a good agreement was found. These profiles show how the isotopic composition of CO2 changes through the upper few decimeters of soil and how the amount of the isotopic fractionation is strongly influenced by soil CO2 flux. Finally, the model was used to derive the carbon isotopic composition of unfractioned deep CO2 source for all the investigated sites
    Description: Published
    Description: 3016–3027
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Carbon isotope fractionation ; soil degassing ; gas transport ; D13C(CO2) ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Mt. Etna is the highest volcano in Europe, up today it reaches about 3320 m a.s.l. It is located in the eastern cost of Sicily (Southern Italy) which is characterized by intense tectonic activity and magmatism (Hirn et al., 1997). The Mt. Etna has a very intense degassing (Gerlach, 1991, Allard et al., 1991) which occurs both from top craters and along its flanks, mainly along the active structures (D’alessandro et al. 1995, Giammanco et al., 1998). In order to monitoring the volcanic activity, since 1989, several soil CO2 flux measurements have been periodically carried out in some areas of the volcano characterized by high CO2 emissions. In particular, the selected areas are located in the SW zone around the Paternò village and in the eastern part of the volcano, around the village of Zafferana Etnea. The measurements of CO2 flux in the areas are performed in a regular grid of about 70 sites. In the past the highest values of CO2 flux were recorded before the 1991-1993 eruption. This was the most important eruption of the last three century as regard of amount of erupted magma volume (Barberi et al., 1993). Generally till now the data about peripheral degassing have been considered only in term of total mean flux leaving aside any consideration about the spatial distribution in the single area. In the last two years, besides simply considered the variations of mean flux, an analysis of spatial distributions variations has been undertaken in order to better understand the relationships between volcano system modifications and diffuse degassing. During the same period two anomalous episodes were recorded one on May - September 2005 and the other, on May – July 2006. These two periods showed on the whole different characteristics. The first anomaly was more intense in the Zafferana area and was coupled with an intense seismic activity recorded, nearby this area. Otherwise the second episodes showed the greatest intensity in Paternò area and coincided with the occurrence of several earthquakes, with hypocentre placed about 10 km depth, few kilometers north of the Paternò. Furthermore both the episodes were associated with significantly modifications on spatial distribution of soil CO2 with shapes and the extents quite different each other. The two anomalies were due to movement and/or arrive of magma batches. The differences being between them reflect inequality in the modality and/or type of the magma rising process. Regarding the occurrence of the last eruptive period (July – December 06) should be noted, that unlike of the almost all previous eruptions, the flux remain rather high in both the areas, also after the beginning of the eruptive event.
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Soil CO2 flux ; Mt. Etna ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The measurement of the CO2 flux exhaled from the soils is a delicate operation because of unavoidable errors caused by the measuring apparatus that disturbs both the soil and the gases circulation. Several methods have been developed in order to perform accurate measurements of soil CO2 flux. The methods used most widely to measure the emission of CO2 from the soil to the atmosphere in volcanic and geothermal areas are the dynamic method Gurrieri and Valenza 1988) and the accumulation chamber method (Baubron et al., 1990;Tonani and Miele., 1991). The flux measurements performed using the dynamic method can be influenced by soil permeability and by the rate of the sampling pump. The accumulation chamber measurements can also be affected by several problems such as wind speed, pumping flux, valuation of tangent at t 0 of the CO2 plot, etc. A laboratory apparatus able to simulate different flux regimens, under known conditions, has been developed and was used to test the performance and reliability of these two methods. The investigated fluxes fell within the range of values close to soil respiration up to those normally measured in active volcanic and geothermal areas. The correct functioning of the laboratory apparatus was checked by comparing the experimental steady state concentration profiles with those predicted by the advective-diffusion model. As can be inferred from the data obtained, the flux measurements performed using the dynamic method are significantly influenced by soil permeability especially if the measurements are taken at high pumping flux. An empirical equation for performing careful soil CO2 flux measurements as a function of the soil permeability was obtained by fitting experimental data to a model that explained the functioning of the system. In order to measure in situ soil permeability, a new method based on the theory of radial gas advection through an isotropic porous medium was developed. The method was tested in the laboratory and at several locations on the island of Vulcano (Aeolian Islands, Italy). Tests performed on the accumulation chamber method have highlighted several sources of errors in measuring CO2 flux with this method. The magnitude and sign of the obtained errors depend on the imposed flux, on soil permeability and on the rate used to induce air circulation in the close loop of the system. Permeability measurements were performed with the radial gas advection method over a large sector of the island of Vulcano (Aeolian Islands, Italy) and the results compared with soil CO2 fluxes measured at the same sites using the dynamic method. Based on the results, the influence of soil permeability on the flux measurements and on their spatial distribution was assessed. Finally, the dynamic method was also applied to a seismic area of Sicily (Capo Calava) in order to study the relationships between soil degassing and tectonics.
    Description: Dipartimento di Chimica e Fisica della Terra ed Applicazioni alle Georisorse ed ai Rischi Naturali (CFTA; Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo; Unione Europea Fondo Sociale Europeo
    Description: Published
    Description: open
    Keywords: soil gases ; flux measurements ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: thesis
    Format: 4790345 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: In order to evaluate the influence of soil permeability on soil CO2 flux measurements performed with the dynamic concentration method, several tests were carried out using soils characterized by different permeability values and flow rates. A special device was assembled in the laboratory to create a one-dimensional gas flow through a soil of known permeability. Using the advective-diffusion theory, a physical model to predict soil concentration gradients was also developed. The calculated values of CO2 concentrations at different depths were compared with those measured during the tests and a good agreement was found. Four soils with different gas permeability (3.6 10 2 to 1.23 102 mm2) were used. The CO2 flux values were varied from 0.1 kg m 2 d 1 up to 22 kg m 2 d 1. On the basis of these results, a new empirical equation for calculating very accurate soil CO2 flux from dynamic concentration and soil permeability values was proposed. As highlighted by the experimental data, the influence of soil permeability on CO2 flux measurements depends on various factors, of which the flow rate of the suction pump is the most important. Setting low values for the pumping flux (0.4–0.8 L min 1), the mean error due to soil permeability was lower than 5%. Finally, the method was tested by measuring the CO2 flux in a grid of 48 sampling sites on Vulcano (Aeolian Islands, Italy), and the global error, affecting the CO2 flux measurements in a real application, was evaluated.
    Description: Published
    Description: B05202
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 flux measurements ; volcanic areas ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: In this paper we have developed a new method for measuring in situ soil permeability, which is based on the theory of radial gas advection through an isotropic porous medium. The method was tested in the laboratory and at several locations on the island of Vulcano (Aeolian Islands, Italy). It consists of a special device which generates a gas source at a depth of 50 cm and it permits measurement of the relative induced pressure in nearby soil at different depths. The characteristic error of the method was less than 10%. Furthermore, soil permeability measurements were carried out in the island of Vulcano during different periods of the year (between May 2000 and June 2001). A strong decrease in permeability in the upper layers of the soil during and after rainfall was noted, with very poor correlations between the spatial distributions of soil CO2 flux and shallow soil permeability.
    Description: Published
    Description: 897-914
    Description: JCR Journal
    Description: reserved
    Keywords: Gas soil permeability ; volcanic areas ; radial gas advection ; soil degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: We present a new device for continuous monitoring of the concentration of CO2 dissolved in water. The device consists of a tube made of a polymeric semi-permeable membrane connected to an infrared gas analyser (IRGA) and a pump. Several laboratory experiments were performed to set the best operating condition and test the accuracy of measurements. We used the device for performing 20 months of continuous monitoring of dissolved CO2 concentration (DCC) in groundwater within a drainage gallery at Mt. Etna. The monitored groundwater intercepts the Pernicana Fault, along which degassing is observed related to volcano-tectonic activity. The acquired data were compared with continuous and discrete data obtained using existing methods. The measurements of DCC resulted in some period of the year well correlated with air temperature. We also found that long-term trends, as well as short-term variations, are probably linked to the dynamics of volcanic activity and/or perturbations in the local or regional stress fields.
    Description: Published
    Description: 3005-3011
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Dissolved CO2 ; Groundwater monitoring ; Gasewater exchange ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.06. Water resources ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...