GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Recent modeling results suggest that oceanic oxygen levels will decrease significantly over the next decades to centuries in response to climate change and altered ocean circulation. Hence the future ocean may experience major shifts in nutrient cycling triggered by the expansion and intensification of tropical oxygen minimum zones (OMZs). There are numerous feedbacks between oxygen concentrations, nutrient cycling and biological productivity; however, existing knowledge is insufficient to understand physical, chemical and biological interactions in order to adequately assess past and potential future changes. We investigated the pelagic biogeochemistry of OMZs in the eastern tropical North Atlantic and eastern tropical South Pacific during a series of cruise expeditions and mesocosm studies. The following summarizes the current state of research on the influence of low environmental oxygen conditions on marine biota, viruses, organic matter formation and remineralization with a particular focus on the nitrogen cycle in OMZ regions. The impact of sulfidic events on water column biogeochemistry, originating from a specific microbial community capable of highly efficient carbon fixation, nitrogen turnover and N2O production is further discussed. Based on our findings, an important role of sinking particulate organic matter in controlling the nutrient stochiometry of the water column is suggested. These particles can enhance degradation processes in OMZ waters by acting as microniches, with sharp gradients enabling different processes to happen in close vicinity, thus altering the interpretation of oxic and anoxic environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-25
    Description: Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266–269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio , which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...