GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Coral reefs 14 (1995), S. 131-140 
    ISSN: 1432-0975
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract.  The analysis of 8 selected cores through fringing reefs in New Caledonia reveals that accretion in the Holocene has been less than 6 m. The cores exhibit three main facies: branching coral (Acropora, dominantly), massive coral heads (Porites, mainly) and coral sand/ rubble, principally made up of acroporid fragments. Subordinate facies are composed of coralline algae and alcyonarian spiculite. The initiation of growth varies according to location. The southern reefs (i.e. early settled reefs) generally began to grow first, prior to 5000 y BP. The northern structures (i.e. more recently settled reefs) are younger, occurring after 4200 y BP. This retardation could be ascribed to differences in local physical conditions (nature of substrate, wave energy). Vertical accretion rates were generally higher in areas of lower energy (3.25 – 6.4 mm·y−1) versus those exposed to higher energy conditions (1.4 –3.1 mm·y−1). Vertical development through time was accompanied by changes in composition of biological assemblages which reflect changes in hydrodynamics. The basal Acropora-dominated facies was replaced upwards by a Porites-dominated framework. The New Caledonian fringing reefs reached the sea surface generally between 5000 and 2500 y BP after the stabilization of sea level. Hence all of these reefs can be classified as catch-up reefs.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Coral reefs 14 (1995), S. 131-140 
    ISSN: 1432-0975
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract The analysis of 8 selected cores through fringing reefs in New Caledonia reveals that accretion in the Holocene has been less than 6 m. The cores exhibit three main facies: branching coral (Acropora, dominantly), massive coral heads (Porites, mainly) and coral sand/ rubble, principally made up of acroporid fragments. Subordinate facies are composed of coralline algae and alcyonarian spiculite. The initiation of growth varies according to location. The southern reefs (i.e. early settled reefs) generally began to grow first, prior to 5000 y BP. The northern structures (i.e. more recently settled reefs) are younger, occurring after 4200 y BP. This retardation could be ascribed to differences in local physical conditions (nature of substrate, wave energy). Vertical accretion rates were generally higher in areas of lower energy (3.25–6.4 mm·y-1) versus those exposed to higher energy conditions (1.4–3.1 mm·y-1). Vertical development through time was accompanied by changes in composition of biological assemblages which reflect changes in hydrodynamics. The basal Acropora-dominated facies was replaced upwards by a Porites-dominated framework. The New Caledonian fringing reefs reached the sea surface generally between 5000 and 2500 y BP after the stabilization of sea level. Hence all of these reefs can be classified as catch-up reefs.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-19
    Description: In situ microbialites occurring in reef rocks dredged between 80 and 130 m water depth on the modern fore-reef slopes of Tahiti and the Marquesas islands yield ages ranging from 17,100 ± 2900 to 4410 ± 2250 years BP, suggesting that they played a prominent role during the last deglacial sea level rise. Microbialites developed in both shallow and deep water depositional environments where they characterize various zones of the reef tracts (reef crests, upper reef slopes, deep fore-reef slopes), reflecting contrasting scenarios of microbialite development involving «reefal microbialites» in shallow-water settings and «slope microbialites» that formed in environments deeper than 10–20 m and extending down to more than 100 m. Reefal microbialites correspond to a late stage of encrustation of the dead parts of coral colonies, or more commonly, of related encrusting organisms (red algae and foraminifers), thus forming surface crusts. Slope microbialites generally form the ultimate stage of a biological succession indicating a deepening sequence, whereby shallow water corals and associated encrusting organisms are replaced by deeper water assemblages of red algae and foraminifers before microbialite growth. The precipitation of phosphatic–iron–manganese crusts and the deposition of planktonic micritic limestones on the microbialites characterize a deepening-upward sequence. The widespread development of microbialites in reef sequences from the Last Deglaciation characterizes a period of environmental degradation consequential on the rapid sea-level rise and abrupt climatic changes of that time. The reported biological succession reflects changes in water quality, and especially an increase in nutrients. In shallow-water settings, increased alkalinity and nutrient availability in interstitial waters were related to surface fluxes and terrestrial groundwater seepage while slope environments were exposed to continuous upwelling of nutrient-rich deeper waters during the last deglacial sea level rise. The age differences between corals and overlying slope microbialites range from 1600 to 8400 years, based on high-precision U-series age measurements of both corals and microbialites, and indicates that a significant time (several thousand years) elapsed between the development of the coralgal frameworks and the growth of slope microbialite crusts. Microbialites cannot be considered as part of the drowning event some 14,000 years ago that resulted in the demise of reef frameworks in the 90–110 m present depth range, but are substantially younger.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...