GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . The establishment of chloroplasts as cellular organelles in the dinoflagellate, heterokont (stramenopile), haptophyte, and cryptophyte algae is widely accepted to have been the result of secondary endosymbiotic events, that is, the uptake of a photosynthetic eukaryote by a phagotrophic eukaryote. However, the circumstances that promote such associations between two phylogenetically distinct organisms and result in the integration of their genomes to form a single functional photosynthetic cell is unclear. The dinoflagellates Peridinium foliaceum and Peridinium balticum are unusual in that each contains a membrance-bound eukaryotic heterokont endosymbiont. These symbioses have been interpreted, through data derived from ultrastructural and biochemical investigations, to represent an intermediate stage of secondary endosymbiotic chloroplast acquistion. In this study we have examined the phylogenetic origin of the P. foliaceum and P. Balticum heterokont endosymbionts through analaysis of their nuclear small subunit ribosomal RNA genes. Our analyses clearly demonstrate both endosymbionts are pennate diatoms belonging to the family Bacillariaceae. Since members of the Bacillariaceae are usually benthic, living on shallow marine sediments, the manner in which establishment of a symbiosis between a planktonic flagellated dinoflagellate and a botton-dwelling diatom is discussed. In particular, specific environmentally associated life strategy stages of the host and symbiont, coupled with diatom food preferences by the dinoflagellate, may have been vital to the formation of this association.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: chloroplast ; evolution ; red algae ; thioredoxin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A gene encoding a thioredoxin protein was identified in the chloroplast genome of the rhodophyte Porphyra yezoensis. The P. yezoensis trxA gene contains 324 bp and is transcribed into a 0.7 kb messenger RNA. Analysis of the transcription start site demonstrates that canonical chloroplast −10 and −35 sequences are not present. The deduced amino acid sequence of the thioredoxin gene from the red algae has the greatest similarity to type m thioredoxins, providing strong support for the hypothesis that type m thioredoxins in photosynthetic eukaryotes originated from an engulfed bacterial endosymbiont. Hybridization analysis of nuclear and chloroplast DNAs from several members of the phyla Chromophyta and Rhodophyta using P. yezoensis DNA as a probe demonstrated strong hybridization to the chloroplast and nuclear genomes of Griffithsia pacifica and a weak cross-hybridization to the chromophyte P. foliaceum. The G. pacifica chloroplast gene has a 66% identity with the P. yezoensis DNA, contains conserved active site amino acid residues, but lacks a methionine start codon.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...