GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-29
    Description: Surface uplift of the Garzón Massif in the northern Andes formed a critical orographic barrier (2500–3000 m elevation) that generated a deep rain shadow and strongly influenced the evolution of the largest river systems draining northern South America. This basement massif and its corresponding foreland basement high define the headwaters and drainage divides of the Amazon, Orinoco, and Magdalena Rivers. Despite its pivotal role, the exhumation history of the Garzón Massif and its relationships to the structural evolution of the broader Eastern Cordillera fold-thrust belt remain unclear. The northern Andes underwent major Cenozoic shortening, with considerable thin-skinned and thick-skinned deformation and topographic development in the Eastern Cordillera focused during late Miocene time. On the basis of widespread coarse-grained nonmarine sedimentation, previous studies have inferred that uplift of the Garzón Massif began during the late Miocene, coincident with rapid elevation gain elsewhere in the Eastern Cordillera. We take an integrated, multiproxy approach to better reconstruct Andean topographic growth and distinguish between exhumation and surface uplift of the Garzón Massif. We present new U-Pb detrital zircon provenance data, sandstone petrographic data, and paleoprecipitation data from upper Miocene clastic fill of the Neiva Basin within the adjacent Upper Magdalena Valley of the modern hinterland. In addition, six new apatite fission track (AFT) ages from the central segment of the northeast-trending Garzón Massif (Jurassic granite and Proterozoic gneiss and schist) directly constrain its Neogene exhumation history. The results indicate that early exhumation may have initiated by ca. 12.5 Ma, but a substantial orographic barrier was not fully established until ca. 6–3 Ma, when 〉1 km/m.y. of material was exhumed. Thermal history modeling of the AFT data suggests diminished exhumation thereafter (3–0 Ma), during latest Cenozoic oblique Nazca–South America convergence. This exhumation history is consistent with paleontological data suggesting late Miocene divergence of the three river systems, with associated transcontinental drainage of the Amazon River.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-27
    Description: A bstract : Carbon and oxygen isotope compositions of pedogenic carbonate preserved in paleosols have been used extensively to reconstruct ancient environmental conditions. One concern is that pedogenic carbonate precipitated in association with a limestone parent material may include a contribution from inherited detrital (lithogenic) marine calcite, thus compromising interpretations of stable-isotope compositions. To investigate the impact of lithogenic calcite on environmental interpretations using paleosols, we measured stable-isotope ratios in pedogenic carbonates and coexisting soil organic matter (SOM) in modern Vertisols (fine, smectitic, thermic, Udic Haplusterts) from Riesel, Texas (Heiden series) and Zabcikville, Texas (Houston Black series) forming on Cretaceous chalk deposits. The pedogenic and lithogenic components in the Heiden series soil at Riesel were identified using micromorphology and cathodoluminescence (CL), which showed incorporation of luminescent marine allochems (i.e., foraminifera, mollusks) into hard nodules and soft powdery pedogenic masses. Additionally, micromorphology showed evidence of meteoric recrystallization of the allochems. Despite the presence of these inherited carbonates into hard nodules and soft powdery masses, the stable-isotope compositions recorded a partial pedogenic signal. Recrystallization of the marine allochems resulted in overprinting of primary marine isotope ratios with ratios that are more similar to those expected for pedogenic carbonates in these soils. This study demonstrates that incorporation of parent material into pedogenic carbonates does not necessarily compromise the pedogenic signal that is useful for paleoenvironmental reconstructions. However, overprinting of marine allochems, if present, can be important and needs to be identified using micromorphology and cathodoluminescence, before using stable-isotope ratios of pedogenic carbonates for paleoenvironmental reconstructions.
    Print ISSN: 1527-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-04
    Description: Records of past topography connect Earth’s deep interior to the surface, reflecting the distribution of heat and mass, past crustal structure, and plate interactions. Many tectonic reconstructions of the North American Cordillera suggest the presence of an Altiplano-like plateau in the location of the modern Basin and Range, with conflicting timing and mechanisms for the onset of surface-lowering extension and orogen collapse. Here we show, through a paleotopographic profile, that from the Eocene to the Oligocene a high, broad orogen stretched across Nevada, with a distinct crest that divided a continuous westward-draining slope extending to central California from an internally drained eastern Nevada plateau. This paleo-orogen maintained demonstrably higher-than-modern elevations, reaching 3500 m in the late Oligocene. Despite the long-term high gravitational potential energy of the crust supporting this topography, surface-lowering extension did not occur until the transition to a transform margin changed the external kinematic framework of the system. Maximum surface lowering was spatially decoupled from brittle upper crustal extension, requiring a large component of mid-crustal flow.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-12
    Description: The geological record encodes the relationship between climate and atmospheric carbon dioxide (CO2) over long and short timescales, as well as potential drivers of evolutionary transitions. However, reconstructing CO2 beyond direct measurements requires the use of paleoproxies and herein lies the challenge, as proxies differ in their assumptions, degree of understanding, and even reconstructed values. In this study, we critically evaluated, categorized, and integrated available proxies to create a high-fidelity and transparently constructed atmospheric CO2 record spanning the past 66 million years. This newly constructed record provides clearer evidence for higher Earth system sensitivity in the past and for the role of CO2 thresholds in biological and cryosphere evolution.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...