GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Organic compounds -- Synthesis. ; Metal catalysts. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (1551 pages)
    Edition: 1st ed.
    ISBN: 9783527655618
    DDC: 547.2
    Language: English
    Note: Intro -- Metal-Catalyzed Cross-Coupling Reactions and More -- Contents to Volume 1 -- Preface -- List of Contributors -- Chapter 1 Mechanistic Aspects of Metal-Catalyzed C,C- and C,X-Bond Forming Reactions -- 1.1 Mechanisms of Cross-Coupling Reactions -- 1.1.1 The Earlier Mechanistic Proposal: The Stille Reaction -- 1.1.2 The Oxidative Addition -- 1.1.2.1 Cis-Complexes in the Oxidative Addition -- 1.1.2.2 The Role of Alkene and Anionic Ligands -- 1.1.2.3 Cross-Couplings in the Presence of Bulky Phosphines -- 1.1.2.4 N-Heterocyclic Carbenes as Ligands -- 1.1.2.5 Palladacycles as Catalysts -- 1.1.2.6 Involvement of Pd(IV) in Catalytic Cycles -- 1.1.2.7 Oxidative Addition of Stannanes to Pd(0) -- 1.1.3 The Transmetallation in the Stille Reaction -- 1.1.3.1 Isolation of the Transmetallation Step -- 1.1.3.2 Dissociative Mechanistic Proposals -- 1.1.3.3 Cyclic and Open Associative Transmetallation -- 1.1.3.4 The Copper Effect -- 1.1.3.5 Transmetallation in the Suzuki-Miyaura Reaction -- 1.1.3.6 Transmetallation in the Negishi Reaction -- 1.1.3.7 Transmetallation in the Hiyama Reaction -- 1.1.3.8 Couplings Catalyzed by Copper and Gold -- 1.1.3.9 Couplings Catalyzed by Iron and Cobalt -- 1.1.4 Reductive Elimination -- 1.2 Palladium-Catalyzed α-Arylation of Carbonyl Compounds and Nitriles -- 1.3 Formation of C-X (X = N, O, S) Bonds in Metal-Catalyzed Reactions -- 1.3.1 Reductive Elimination to Generate C-N, C-O, and C-S Bonds from Organopalladium(II) Complexes -- 1.3.2 Nickel- and Copper-Catalyzed Formation of C-X Bonds -- 1.4 Summary and Outlook -- List of Abbreviations -- References -- Chapter 2 State-of-the-Art in Metal-Catalyzed Cross-Coupling Reactions of Organoboron Compounds with Organic Electrophiles -- 2.1 Introduction -- 2.1.1 Catalytic Cycle -- 2.1.2 Improvements toward More Efficient Cross-Coupling Conditions. , 2.1.2.1 Development of New Phosphine and NHC Ligands -- 2.1.2.2 Usage of Masked Boron Derivatives as Cross-Coupling Partners -- 2.1.2.3 Lewis Acids as Additives -- 2.1.2.4 Adjusting the Nucleophilicity of Organoboron Cross-Coupling Partners -- 2.1.2.5 Copper Salts as Additives -- 2.2 Advances in Cross-Coupling Reactions for the Formation of C(sp2)-C(sp2) Bonds -- 2.2.1 Background -- 2.2.2 Recent Developments in the Use of New Electrophilic Coupling Partners -- 2.2.2.1 Chlorides -- 2.2.2.2 Fluorides -- 2.2.2.3 Pseudohalides -- 2.2.3 Recent Developments in Organoboron Cross-Coupling Partners -- 2.2.3.1 Trifluoroborate Salts -- 2.2.3.2 N-Methyliminodiacetic Acid (MIDA) Boronates -- 2.2.3.3 Other Organoboron Cross-Coupling Partners -- 2.2.4 Synthesis of Enantiomerically Enriched Atropisomers -- 2.3 Advances in the Cross-Coupling Reactions for the Formation of C(sp3)-C(sp2) or C(sp3)-C(sp3) Bonds -- 2.3.1 Background -- 2.3.1.1 Stereochemistry -- 2.3.2 Cross-Couplings between Unsaturated sp2 Carbon Centers and sp3 Carbon Centers -- 2.3.2.1 Cross-Couplings between sp3 Alkyl Halides and sp2 Alkenyl or Aryl Boron Derivatives -- 2.3.2.2 Cross-Couplings between sp3 Alkyl Boron Derivatives with sp2 Alkenyl or Aryl Halides -- 2.3.3 Cross-Couplings between sp3 Carbon Centers with sp3 Carbon Centers -- 2.3.3.1 Cross-Couplings between Achiral Substrates -- 2.3.3.2 Stereoselective Cross-Coupling Reactions of sp3 Alkyl Halides with sp3 Alkylboranes -- 2.4 Experimental Procedures -- 2.4.1 2,6-Dimethoxy-2',6'-dimethylbiphenyl (55) -- 2.4.2 4-Methoxybiphenyl (R = C(O)NEt2, R' = H, Ar = 4-methoxyphenyl) -- 2.4.3 1-Phenylnaphthalene (ROH = naphthol, Ar = Ph) -- 2.4.4 1-(3,5-Dimethoxyphenyl)-5-phenylpentan-3-one (Ralkyl-BF3K = 197, R1 = CH2CH2Ph, R' = 3,5-dimethoxybenzene) -- 2.4.5 1-Phenyl-1-(4-acetylphenyl-ethane (ArI = 4-iodoacetophenone). , 2.4.6 Naphthalene-1,8-diamido (dan) derivative (Ar = Ph) -- 2.4.7 2-Methyl-5-phenylpentyl benzyl(phenyl)carbamate (Ralkyl = Me,X = Br, R'alkyl = CH2CH2CH2Ph) -- 2.5 Summary and Outlook -- References -- Chapter 3 Pd-Catalyzed Cross-Coupling with Organometals Containing Zn, Al, Zr, and so on - The Negishi Coupling and Its Recent Advances -- 3.1 Background and Discovery -- 3.1.1 Why Metals? Why Transition Metals? -- 3.1.2 Why Transition Metal-Catalyzed Organometallic Reactions? -- 3.2 Discovery of the Pd- or Ni-Catalyzed Cross-Coupling Reactions of Organometals Containing Zn, Al, Zr, and B -- 3.3 The Current Scope of the Pd- or Ni-Catalyzed Cross-coupling and Its Application to the Synthesis of Natural Products and Other Complex Organic Compounds -- 3.3.1 Cross-Coupling between Two Unsaturated (Aryl, Alkenyl, and/or Alkynyl) Groups -- 3.3.1.1 Aryl-Aryl Coupling -- 3.3.1.2 Aryl-Alkenyl and Alkenyl-Aryl Couplings -- 3.3.1.3 Alkenyl-Alkenyl Coupling -- 3.3.1.4 Pd-Catalyzed Alkynylation -- 3.3.2 Cross-Coupling Involving One Allyl, Benzyl, or Propargyl Group -- 3.3.2.1 1,4-Dienes via Pd-Catalyzed Alkenyl-Allyl and Allyl-Alkenyl Coupling and 1,4-Enynes by Pd-Catalyzed Alkynyl-Allyl Coupling -- 3.3.2.2 Benzyl-Aryl, Aryl-Benzyl Coupling -- 3.3.2.3 Allylbenzene Derivatives via Pd-Catalyzed Alkenyl-Benzyl Coupling and Aryl-Allyl and Allyl-Aryl Coupling -- 3.3.2.4 Benzylated Alkynes via Pd-Catalyzed Alkynyl-Benzyl Coupling and Aryl-Propargyl as well as Propargyl-Aryl Coupling -- 3.3.2.5 1,4-Diynes via Alkynyl-Propargyl Coupling -- 3.3.2.6 Synthesis of Natural Products Containing 1,4-Diene and Allylated Arenes by Pd-Catalyzed Allylation, Benzylation, and Propargylation -- 3.3.3 Cross-Coupling between Two Allyl, Benzyl, and/or Propargyl Groups -- 3.3.3.1 1,5-Dienes and 1,5-Enynes via Pd-Catalyzed Cross-Couplings with Allyl, Benzyl, Propargyl Electrophiles. , 3.3.3.2 1,5-Dienes and 1,5-Enynes via Pd-Catalyzed Homoallyl-Alkenyl Coupling and Homopropargyl-Alkenyl Coupling -- 3.3.3.3 Bibenzyls, Homoallylarenes, 1,5-Dienes, Homopropargylarenes, and 1,5-Enynes via Pd-Catalyzed Negishi Coupling -- 3.3.4 Cross-Coupling Involving Alkylmetals and/or Alkyl Electrophiles Other Than Those Containing Allyl, Benzyl, and/or Propargyl Groups -- 3.3.4.1 Pd-Catalyzed Alkyl-Alkyl Coupling -- 3.3.4.2 Ni-Catalyzed Alkyl-Alkyl Coupling -- 3.3.4.3 Catalytic Asymmetric Cross-Coupling Reactions with Secondary Alkyl Halides -- 3.3.5 Pd-Catalyzed Acylation, Cyanation, and α-Substitution of Enolates and Related Derivatives -- 3.3.5.1 Pd-Catalyzed Acylation -- 3.3.5.2 Pd-Catalyzed Cyanation -- 3.3.5.3 Pd-Catalyzed α-Substitution of Enolates and Related Derivatives -- 3.4 Zr-Catalyzed Asymmetric Carboalumination of Alkenes (ZACA) ZACA-Pd- or Cu-Catalyzed Cross-Coupling Sequential Processes as a General Route to Enantiomerically Enriched Chiral Organic Compounds -- 3.4.1 Zirconium-Catalyzed Asymmetric Carboalumination of Alkenes (ZACA Reaction) -- 3.4.1.1 Historical and Mechanistic Background of Carbometallation of Alkenes and Alkynes with Alkylzirconocene Derivatives -- 3.4.1.2 Catalytic Asymmetric Carbometallation of Alkenes Proceeding via Dzhemilev Ethylmagnesiations -- 3.4.2 Current Summary of Development and Application of the ZACA Reaction and Conclusion -- 3.4.2.1 ZACA-Pd-Catalyzed Cross-Coupling Sequential Processes for the Synthesis of Deoxypolypropionates and Related Compounds -- 3.4.2.2 ZACA-Lipase-Catalyzed Acetylation-Pd- or Cu-Catalyzed Cross-Coupling Synergy to Chiral Organic Compounds -- 3.5 Representative Experimental Procedures -- 3.5.1 (2Z,4S)-5-(tert-Butyldimethylsilyloxy)-2-phenyl-4-methyl-2-pentene -- 3.5.2 (2Z,4E,6E)-Ethyl Trideca-2,4,6-trienoate -- 3.5.3 (2Z)-2-Allyl-3,7-dimethylocta-2,6-dien-1-ol. , 3.5.4 Ethyl 2-(4-Phenylbuta-1,3-diynyl)benzoate -- 3.5.4.1 (E)-1-Chloro-4-phenyl-1-buten-3-yne -- 3.5.4.2 Ethyl 2-(4-Phenylbuta-1,3-diynyl)benzoate -- 3.5.5 O-tert-Butyldiphenylsilyl-protected (3S,5E)-3,9-Dimethyl-6-isopropyl-5,8-decadien-1-ol -- 3.5.5.1 (1E)-1-Iodo-2-isopropyl-5-methyl-1,4-hexadiene -- 3.5.5.2 O-tert-Butyldiphenylsilyl-protected (3S,5E)-3,9-Dimethyl-6-isopropyl-5,8-decadien-1-ol -- 3.5.6 1,3-Diphenylpropyne -- 3.5.7 (4S)-4-Phenyl-1-pentene -- 3.5.8 (R)-2-Phenylpropan-1-ol -- Acknowledgments -- References -- Chapter 4 Carbon-Carbon Bond Forming Reactions Mediated by Organozinc Reagents -- 4.1 Introduction -- 4.2 Methods of Preparation of Zinc Organometallics -- 4.2.1 Direct Insertion of Zn(0) into Organohalides -- 4.2.2 Transmetallation Reactions -- 4.2.2.1 Transmetallation Reactions with Main-Group and Transition Metal Organometallics -- 4.2.2.2 Boron-Zinc Exchange Reactions -- 4.2.3 Direct Zincation Reactions -- 4.2.4 Halogen-Zinc Exchange Reactions -- 4.2.5 Hydro- and Carbozincation Reactions -- 4.3 Uncatalyzed Cross-Coupling Reactions of Organozinc Reagents -- 4.4 Copper-Catalyzed Cross-Coupling Reactions of Organozinc Reagents -- 4.4.1 Cross-Coupling with C(sp)- or C(sp2)-Electrophiles -- 4.4.2 Cross-Coupling Reactions with C(sp3)-Electrophiles -- 4.5 Transition-Metal-Catalyzed Cross-Coupling Reactions of Organozinc Reagents -- 4.5.1 Cross-Coupling Reactions of C(sp2)-Organozinc Reagents -- 4.5.1.1 Palladium-Catalyzed Cross-Coupling Reactions -- 4.5.1.2 Nickel-Catalyzed Cross-Coupling Reactions -- 4.5.1.3 Rhodium-Catalyzed Cross-Coupling Reactions -- 4.5.1.4 Cobalt-Catalyzed Cross-Coupling Reactions -- 4.5.1.5 Iron-Catalyzed Cross-Coupling Reactions -- 4.5.2 Cross-Coupling Reactions of Alkynylzinc Reagents -- 4.5.2.1 Cross-Coupling with C(sp2)-Electrophiles -- 4.5.2.2 Cross-Coupling with C(sp3)-Electrophiles. , 4.5.3 Cross-Coupling Reactions of C(sp3)-Organozinc Reagents.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Vienna :Springer Wien,
    Keywords: Mycotoxins. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (303 pages)
    Edition: 1st ed.
    ISBN: 9783709113127
    Series Statement: Progress in the Chemistry of Organic Natural Products Series ; v.97
    Language: English
    Note: Intro -- The Chemistry of Mycotoxins -- Contents -- List of Contributors -- About the Authors -- 1: Introduction -- 2: Aflatoxins -- 2.1 Biological Properties -- 2.2 Total Syntheses of Aflatoxins -- 2.2.1 Total Syntheses of Racemic Aflatoxins -- 2.2.2 Enantioselective Total Syntheses of Aflatoxins -- 2.3 Syntheses of Aflatoxin Building Blocks -- 2.3.1 Syntheses of Building Blocks for Aflatoxins B2 and G2 -- 2.3.2 Syntheses of Building Blocks for Aflatoxins B1 and G1 -- 2.3.3 Synthesis of a Building Block for Aflatoxin M2 -- 2.3.4 Enantioselective Syntheses of Aflatoxin Building Blocks -- 2.4 Syntheses of Biosynthetic Aflatoxin Precursors -- 3: Citrinin -- 3.1 General -- 3.2 Total Syntheses of Citrinin -- 4: Ergot Alkaloids -- 4.1 Structural Subclasses of Ergot Alkaloids -- 4.1.1 Tricyclic Precursors of Ergot Alkaloids -- 4.1.2 Clavine-Type Alkaloids -- 4.1.3 Ergoamides -- 4.1.4 Ergopeptines -- 4.1.5 Related Structures -- 4.2 Biological Properties -- 4.3 Total Syntheses -- 4.3.1 Enantioselective Synthesis via Pd-Catalyzed Oxidative Kinetic Resolution: (-)-Aurantioclavine -- 4.3.2 Asymmetric Alkenylation of Sulfinyl Imines: (-)-Aurantioclavine -- 4.3.3 The IMDAF-Approach to ()-Cycloclavine -- 4.3.4 Enantioselective Pd-Catalyzed Domino Cyclization Strategy to (+)-Lysergic acid, (+)-Lysergol, and (+)-Isolysergol -- 4.3.5 Intramolecular Vinylogous Mannich Approach to Rugulovasines A and B -- 4.3.6 Intermolecular Vinylogous Mannich Approach to Setoclavine -- 4.3.7 Biomimetic Three-Step Synthesis of Clavicipitic Acids -- 5: Fumonisins -- 5.1 Biological Properties -- 5.2 Total Syntheses -- 5.2.1 Total Synthesis of Fumonisin B1 -- 5.2.2 Enantioselective Total Synthesis of Fumonisin B2 -- 5.2.3 Total Synthesis of AAL-toxin TA1 -- 6: Ochratoxins -- 6.1 Biological Properties -- 6.2 Total Syntheses. , 6.2.1 Enantioselective Total Synthesis of (R)-Ochratoxin α and Ochratoxins A, B, and C -- 6.2.2 Total Syntheses of Racemic Ochratoxins α and Ochratoxins A, B, and C -- 6.2.3 Total Syntheses of All Stereoisomers of Ochratoxin A -- 7: Patulin -- 7.1 General -- 7.2 Total Syntheses of Patulin -- 8: Trichothecenes -- 8.1 Biological Properties -- 8.2 Total Syntheses -- 8.2.1 Non-Macrocyclic Trichothecenes -- 8.2.1.1 Synthesis of Trichodermin -- 8.2.1.2 Synthesis of Anguidine -- 8.2.1.3 Synthesis of Sporol -- 8.2.2 Macrocyclic Trichothecenes -- 8.2.2.1 Synthesis of Verrucarol -- 8.2.2.2 Synthesis of Verrucarin A -- 8.2.2.3 Synthesis of Roridin E and Baccharin B5 -- 9: Resorcylic Acid Lactones -- 9.1 Biological Properties -- 9.2 Total Syntheses -- 9.2.1 Total Syntheses of Zearalenone -- 9.2.1.1 Total Synthesis of (S)-Zearalenone by Nicolaou -- 9.2.1.2 Total Synthesis of (S)-Zearalenone by Barrett -- 9.2.2 Total Synthesis of Zearalenol -- 9.2.3 Total Synthesis of Radicicol -- 9.2.4 Total Synthesis of Hypothemycin -- 9.2.5 Total Synthesis of Aigialomycin D -- 9.2.6 Total Synthesis of Pochonin C -- 10: (Thio)diketopiperazines -- 10.1 Biological Properties -- 10.2 Total Syntheses -- 10.2.1 DKP Total Syntheses -- 10.2.2 TDKP Total Syntheses -- 11: Alternaria Metabolites -- 11.1 Biological Properties -- 11.2 Total Syntheses -- 11.2.1 Total Synthesis of Alternariol and Alternariol 9-Methyl Ether -- 11.2.2 Total Synthesis of Altenuene and Isoaltenuene -- 11.2.3 Total Synthesis of Dehydroaltenusin -- 11.2.4 Total Synthesis of Neoaltenuene -- 11.2.5 Total Synthesis of Tenuazonic Acid -- 12: Skyrins -- 12.1 Biological Properties -- 12.2 Syntheses of Skyrin Model Systems -- 12.3 Total Syntheses of Skyrins -- 13: Xanthones -- 13.1 Xanthones -- 13.1.1 Bikaverin -- 13.1.2 Pinselin and Pinselic Acid -- 13.1.3 Sterigmatocystin and Derivatives. , 13.1.3.1 Isolation and Structural Determination -- 13.1.3.2 Biosynthesis -- 13.1.3.3 Bioactivity -- 13.1.3.4 Synthesis -- 13.1.4 Nidulalin A -- 13.2 Tetrahydroxanthones -- 13.2.1 Blennolides -- 13.2.2 Dihydroglobosuxanthone -- 13.2.3 Diversonol -- 13.2.4 Diversonolic Esters -- 13.3 Hexahydroxanthones -- 13.3.1 Applanatins -- 13.3.2 Isocochlioquinones -- 13.3.3 Monodictysins -- 13.4 Xanthone Dimers and Heterodimers -- 13.4.1 Acremoxanthones -- 13.4.2 Vinaxanthones -- 13.4.3 Xanthofulvin -- 13.5 Tetrahydroxanthone Dimers and Heterodimers -- 13.5.1 Parnafungins -- 13.5.2 Ascherxanthone -- 13.5.3 Secalonic Acids -- 13.5.4 Xanthoquinodins -- 13.5.5 Beticolins -- 13.5.6 Dicerandrols -- 13.5.7 Microsphaerins -- 13.5.8 Neosartorin -- 13.5.9 Phomoxanthones -- 13.5.10 Rugulotrosins -- 13.5.11 Sch 42137 -- 13.5.12 Sch 54445 -- 13.5.13 Xanthonol -- 14: Cytochalasans -- 14.1 Biological Properties -- 14.2 Total Syntheses -- 14.2.1 Total Synthesis of Cytochalasin B and L-696,474 -- 14.2.2 Total Synthesis of Proxiphomin -- 14.2.3 Total Synthesis of Cytochalasin H -- 14.2.4 Total Synthesis of Cytochalasin G -- 14.2.5 Total Synthesis of Cytochalasins D and O -- 14.2.6 Total Synthesis of (-)-Aspochalasin B -- 14.2.7 Total Synthesis of Zygosporin E -- 15: Peptidic Mycotoxins -- 15.1 Biological Properties -- 15.2 Total Syntheses -- 15.2.1 Total Synthesis of Pithomycolide -- 15.2.2 Total Synthesis of Ustiloxins D and F -- 15.2.3 Total Synthesis of Malformin C -- 15.2.4 Total Synthesis of Unguisin A -- Abbreviations -- References -- Author Index -- Subject Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Azides. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (537 pages)
    Edition: 1st ed.
    ISBN: 9780470682524
    Language: English
    Note: Organic Azides Syntheses and Applications -- Contents -- Foreword -- Preface -- List of Contributors -- Abbreviations -- PART 1: Synthesis and Safety -- 1: Lab-scale Synthesis of Azido Compounds: Safety Measures and Analysis -- 1.1 Introduction -- 1.2 Properties that Impose Restrictions on Lab-scale Handling of Azides -- 1.2.1 Hydrazoic Acid and Its Metal Salts -- 1.2.2 Organic Azides -- 1.3 Laboratory Safety Instructions for the Small-scale Synthesis of Azido Compounds -- 1.4 Analyzing Safety-related Properties of Azides -- 1.4.1 Impact Sensitivity Testing -- 1.4.2 Friction Sensitivity Testing -- 1.4.3 ESD Testing -- 1.4.4 Thermoanalytical Measurements -- 1.4.5 Calorimetric and Gravimetric Stability Tests -- 1.4.6 Koenen Test -- References -- 2: Large-scale Preparation and Usage of Azides -- 2.1 Introduction -- 2.2 Precursor Azides, Technical Production and Properties -- 2.2.1 Sodium azide (NaN3) -- 2.2.2 Trimethylsilyl Azide (TMSA)14 -- 2.2.3 Diphenylphosphoryl Azide (DPPA)14 -- 2.2.4 Tributyltin Azide (TBSnA) -- 2.2.5 Azidoacetic Acid Ethyl Ester (AAE)14 -- 2.2.6 Tetrabutylammonium Azide (TBAA)14 -- 2.2.7 Others -- 2.3 Examples for the Use of Azides on a Technical Scale -- 2.3.1 Addition of NaN3 to Multiple CC- or CN-Bonds -- 2.3.2 Addition of Alk-N3 and Ar-N3 to Multiple CC- and/or CN-Bonds -- 2.3.3 Carboxylic Acid Azides: Precursors for Isocyanates -- 2.3.4 Organic Azides: Ring Opening Reaction on Oxiranes and Aziridines: Paclitaxel, Tamiflu® -- 2.3.5 Organic Azides: Protective Group, Masked Amines -- 2.3.6 Organic Azides: Cross-linking Agents for Polymers -- 2.4 The Future of Commercial-scale Azide Chemistry -- References -- 3: Synthesis of Azides -- 3.1 Introduction -- 3.2 Synthesis of Alkyl Azides -- 3.2.1 Classic Nucleophilic Substitutions: Azides from Halides, Sulfonates, Sulfites, Carbonates, Thiocarbonates and Sulfonium Salts. , 3.2.2 Azides by Ring Opening of Epoxides and Aziridines -- 3.2.3 Azides by the Mitsunobu Reaction -- 3.2.4 Alkyl Azides from Amines -- 3.2.5 Alkyl Azides from Carbon Nucleophiles and Electron-poor Sulfonyl Azides -- 3.3 Synthesis of Aryl Azides -- 3.3.1 Nucleophilic Aromatic Substitution: SNAr Reactions -- 3.3.2 Aryl Azides from Diazonium Compounds -- 3.3.3 Aryl Azides from Organometallic Reagents -- 3.3.4 Aryl Azides by Diazo Transfer -- 3.3.5 Aryl Azides from Hydrazines and from Nitrosoarenes -- 3.4 Synthesis of Acyl Azides -- 3.4.1 Acyl Azides from Mixed Acid Chlorides -- 3.4.2 Acyl Azides from Mixed Anhydrides -- 3.4.3 Acyl Azides by Direct Conversion of Carboxylic Acids -- 3.4.4 Acyl azides by Direct Conversion of Aldehydes -- 3.4.5 Acyl Azides by Direct Conversion of Acylhydrazines -- 3.4.6 Acyl Azides from N-acylbenzotriazoles -- References -- 4: Azides by Olefin Hydroazidation Reactions -- 4.1 Introduction -- 4.2 Conjugate Addition of Hydrazoic Acid and Its Derivatives -- 4.3 Addition of Hydrazoic Acid and Its Derivatives to Non-Activated Olefins -- 4.4 Cobalt-Catalyzed Hydroazidation -- 4.4.1 Optimization of the Cobalt-Catalyzed Hydroazidation Reaction -- 4.4.2 Scope of the Hydroazidation of Olefins -- 4.4.3 Further Process Optimization -- 4.4.4 One-pot Functionalization of the Azide Products -- 4.4.5 Mechanistic Investigations -- 4.5 Conclusion -- References -- PART 2: Reactions -- 5: The Chemistry of Vinyl, Allenyl, and Ethynyl Azides -- 5.1 Introduction and Early Synthetic Methods for Vinyl Azides -- 5.2 Routes to Vinyl Azides Developed in the Period 1965-70 -- 5.3 New Methods to Prepare Vinyl Azides -- 5.4 Reactions of Vinyl Azides -- 5.5 The Chemistry of Allenyl Azides -- 5.6 Generation of Ethynyl Azides -- 5.7 Conclusion -- Acknowledgment -- References -- 6: Small Rings by Azide Chemistry -- 6.1 Introduction -- 6.2 2H-Azirines. , 6.3 Aziridines -- 6.3.1 Aziridines via Nitrene Intermediates -- 6.3.2 Aziridines via Triazolines -- 6.3.3 Aziridines from Epoxides or 1,2-Diols -- 6.3.4 Aziridines from Vinyl Azides via 2H-Azirines -- 6.4 Triaziridines -- 6.5 Azetidinones -- References -- 7: Schmidt Rearrangement Reactions with Alkyl Azides -- 7.1 Introduction and Early Attempts (1940-60) -- 7.2 Schmidt Reactions of Alkyl Azides with Carbonyl Compounds -- 7.2.1 Intramolecular Reactions -- 7.2.2 Intermolecular Reactions -- 7.2.3 Reactions of Hydroxyalkyl Azides -- 7.3 Schmidt Reactions of Alkyl Azides with Carbocations -- 7.4 Metal-mediated Schmidt Reactions of Alkyl Azides with Alkenes and Alkynes -- 7.5 Reactions of Alkyl Azides with α,β-Unsaturated Ketones -- 7.6 Reactions of Alkyl Azides with Epoxides -- 7.7 Combined Schmidt Rearrangement Cascade Reactions -- 7.8 Schmidt Rearrangements in the Total Synthesis of Natural Products -- 7.9 Schmidt Rearrangements of Alkyl Azides in the Synthesis of Interesting Non-natural Products -- 7.10 Schmidt Rearrangements of Hydroxyalkyl Azides toward Biologically Relevant Compounds -- 7.11 Final Comments -- Acknowledgments -- References -- 8: Radical Chemistry with Azides -- 8.1 Introduction -- 8.2 Addition of the Azidyl Radical onto Alkenes -- 8.2.1 Metal Generated Azidyl Radicals -- 8.2.2 Azidation using Hypervalent Iodine Compounds -- 8.2.3 Halogen Azides as a Source of Azidyl Radicals -- 8.2.4 Electrochemically Generated Azidyl Radicals -- 8.3 Azidation of Carbon Centered Radicals -- 8.3.1 Radical Azidation -- 8.3.2 Radical Additions to Alkyl and Aryl Azides -- 8.4 Aminyl and Amidyl Radicals via Reduction of Azides -- 8.4.1 Photo-and Electrochemical Reductions of Organic Azides to Amines -- 8.4.2 Reduction of Organic Azides with Metals -- 8.4.3 Reduction of Organic Azides with SmI2. , 8.4.4 Radical Reactions of Organic Azides with Tributyltin Hydride -- 8.4.5 Radical Reductions of Organic Azides with Silanes -- 8.4.6 Radical Reactions of Organic Azides with FeCl2 -- 8.5 Fragmentation Reaction of α-Azidoalkyl Radicals -- 8.6 Conclusions -- References -- 9: Cycloaddition Reactions with Azides: An Overview -- 9.1 Huisgen 1,3-dipolar cycloaddition -- 9.2 Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) -- 9.2.1 General Aspects of the CuAAC Reaction -- 9.2.2 Mechanism of the CuAAC Reaction -- 9.3 Acceleration of the Click Reaction -- 9.3.1 Addition of Ligands -- 9.3.2 Addition of Base -- 9.4 Copper-free Click Chemistry -- 9.5 Ruthenium-Catalyzed Azide-Alkyne Cycloaddition (RuAAC) -- 9.6 Use of Other Metals for the Cycloaddition of Azides and Alkynes: Ni(II), Pt(II), Pd(II) -- 9.7 Cycloaddition Reactions with Azides for the Synthesis of Tetrazoles -- 9.7.1 Intermolecular Approaches -- 9.7.2 Intermolecular Approaches -- 9.8 Click Chemistry for the Synthesis of Dihydrotriazoles -- 9.9 Cycloaddition Reactions with Azides to Give Thiatriazoles -- References -- 10: Dipolar Cycloaddition Reactions in Peptide Chemistry -- 10.1 Introduction -- 10.2 Amino Acid Derivatives by DCR -- 10.3 Peptide Backbone Modifications by DCR -- 10.4 Other Peptide Modifications by DCR -- 10.5 Macrocyclization by DCR -- 10.6 Dendrimers and Polymers -- 10.7 Isotopic Labeling by DCR -- 10.8 Perspective -- References -- 11: Photochemistry of Azides: The Azide/Nitrene Interface -- 11.1 Introduction -- 11.2 Photochemistry of Hydrazoic Acid (HN3) -- 11.3 Photochemistry of Alkyl Azides -- 11.4 Photochemistry of Vinyl Azides -- 11.5 Photochemistry of Carbonyl Azides and Azide Esters -- 11.5.1 Photochemistry of Azide Esters -- 11.6 Photochemistry of Phenyl Azide and Its Simple Derivatives -- 11.6.1 Photochemistry of Phenyl Azide. , 11.6.2 Photochemistry of Simple Derivatives of Phenyl Azide -- 11.6.3 Photochemistry of Polynuclear Aromatic Azides -- 11.7 Conclusion -- Acknowledgments -- References -- 12: Organoazides and Transition Metals -- 12.1 Introduction -- 12.2 Metal Complexes Co-crystallized with an Organoazide -- 12.3 Cationic Metal Complexes with Organoazide Containing Anions -- 12.4 Metal Complexes with Ligands Bearing a Non-coordinating Organoazide Unit -- 12.5 Metal Complexes with an Intact, Coordinating and Linear Organoazide Ligand -- 12.6 Metal Complexes with an Intact, Coordinating but Bent Organoazide Ligand -- 12.7 Organoazides Reacting with Other Metal Bound Ligands -- References -- PART 3: Material Sciences -- 13: Azide-containing High Energy Materials -- 13.1 Introduction -- 13.2 Organic Azides -- 13.2.1 Alkyl and Alkenyl Substituted Azides -- 13.2.2 Aryl Substituted Azides -- 13.2.3 Heterocycles Containing Azide Groups -- Acknowledgments -- References -- 14: Azide Chemistry in Rotaxane and Catenane Synthesis -- 14.1 Introduction -- 14.2 Purely Organic Rotaxanes and Catenanes -- 14.2.1 With Cucurbiturils (CB) and Cyclodextrins (CD) as Cyclic Components -- 14.2.2 Based on Hydrogen Bonding or on Organic Donor-Acceptor Complexes -- 14.3 Transition Metal Templated Approaches -- 14.3.1 Cu(I) Assembled Rotaxanes -- 14.3.2 Cu(I) as Both a Template and a Catalyst -- 14.4 Conclusion -- References -- PART 4: Application in Bioorganic Chemistry -- 15: Aza-Wittig Reaction in Natural Product Syntheses -- 15.1 Introduction -- 15.2 Intermolecular Aza-Wittig Reaction -- 15.2.1 Reaction with Carbonyl Compounds -- 15.2.2 Reaction with Heterocumulene Derivatives -- 15.3 Intramolecular Aza-Wittig Reaction -- 15.3.1 Functionalized Phosphazenes Containing an Aldehyde Group -- 15.3.2 Functionalized Phosphazenes containing a Ketone Group. , 15.3.3 Functionalized Phosphazenes Containing an Ester Group.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Solid-phase synthesis. ; Combinatorial chemistry. ; Electronic books.
    Description / Table of Contents: With contributions by numerous experts.
    Type of Medium: Online Resource
    Pages: 1 online resource (370 pages)
    Edition: 1st ed.
    ISBN: 9783540725107
    Series Statement: Topics in Current Chemistry Series ; v.278
    DDC: 615.19
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Electronic books.
    Description / Table of Contents: This book addresses the various classes of privileged scaffolds and covers the history of their discovery and use.
    Type of Medium: Online Resource
    Pages: 1 online resource (487 pages)
    Edition: 1st ed.
    ISBN: 9781782622246
    Series Statement: ISSN Series
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Asymmetric synthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (432 pages)
    Edition: 1st ed.
    ISBN: 9783527672578
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Berlin, Heidelberg : Springer Berlin Heidelberg
    Keywords: Chemistry, Organic ; Biochemistry ; Chemistry ; Aufsatzsammlung ; Kombinatorische Synthese ; Festphasentechnik
    Type of Medium: Online Resource
    Pages: Online-Ressource (XII, 360 p. Also available online, digital)
    ISBN: 9783540725107
    Series Statement: Topics in Current Chemistry 278
    RVK:
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0947-6539
    Keywords: alkynes ; asymmetric syntheses ; cyclopropanes ; spiro compounds ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A variety of chiral, nonracemic 2-alkoxy-1-alkynylcyclopropanes 7 were synthesized in good to very good yields from enantiomerically pure glycidol derivatives (glycidol tosylate, epichlorohydrin) by boron trifluoride promoted addition of lithium trimethylsilylacetylide followed by protection of the secondary hydroxyl group and finally a diastereoselective γ-elimination. The 2-ethoxy derivative (S,R)-7 b was deprotonated with n-butyllithium, and the resulting 1-lithio-2-ethoxy derivative (S,R)-20 functionalized by treatment with oxygen followed by tosyl chloride. Protodesilylation and catalytic hydrogenation smoothly furnished 1-ethenylcyclopropyl sulfonates, which underwent a clean Pd0-catalyzed SN2′-type substitution with dimethyl propargylsodiummalonate to give the (E)-configurated enyne (R,E)-26 with a methylenecyclopropane end group. A diastereoselective Pauson-Khand reaction completed the sequence to give the enantiomerically pure spirocyclopropaneannelated bicyclo[3.3.0]octane derivative 31.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1434-193X
    Keywords: Amino acids ; Bicyclopropylidene ; Methylenecyclopropane ; Palladium catalysis ; Zinc reagents ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Palladium-catalyzed cross-coupling reactions of bromo(methylenecyclopropanes) 1c, 2c with the sodium enolate of dimethyl malonate 4a and the chlorozinc enolates of the glycine equivalent (diphenylmethyleneamino)acetate 4c and diethyl malonate 4d, respectively, have been found to proceed with opening of the three-membered ring in each case, to give the corresponding dienyl-substituted CH-acidic compounds 5-7 in moderate to good yields. On the other hand, coupling of bicyclopropylidenylzinc chloride (2d) with diethyl bromomalonate (4e) and the electrophilic glycine equivalent ethyl 2-acetoxy-2-(diphenylmethyleneamino)acetate (4f) gave 7 and 6 in 27 and 29% yield, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1434-193X
    Keywords: Cross-coupling, Heck ; Palladium catalysis ; Indanes ; Arenes, dialkenyl-N ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: o-Bromostyrenes 2-Br react with various alkenes in the presence of palladium catalysts to give either substituted indene 6 or o-diethenylbenzene derivatives 3, depending on the reaction conditions. Under oxidative conditions the latter can be cyclized to indene derivatives as well.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...