GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-04-20
    Description: To support local to regional climate change mitigation and adaptation actions, this spatial dataset prioritizes forestlands for preservation across Oregon, United States. The urgent need for climate change mitigation and adaptation actions has led to efforts to protect 30% of land area by 2030 (30x30) and 50% by 2050 (50x50). A key aspect of these efforts is strategically prioritizing lands for new protection, so they most effectively protect climate and biodiversity. Oregon has among the most carbon-rich forests on the planet, yet only about 10% of it's forests are currently protected, which is lower than any other state in the western United States. We therefore developed and applied a quantitative forest preservation priority ranking system that incorporated existing statewide spatial datasets related to forest carbon, biodiversity, and climate change resilience. Specifically, this approach utilized estimates of (1) tree aboveground carbon stocks, (2) tree, amphibian, bird, mammal, and reptile species richness, and (3) climate change resilience derived from metrics of topoclimatic diversity and landscape connectivity. Input datasets reflect contemporary (2000-2020) forest conditions and were re-gridded to a common 30 m x 30 m spatial resolution. Each forest patch (i.e., a 30 x 30 m grid cell) was ranked relative to others in its ecoregion based on carbon, biodiversity, and/or resilience metrics (i.e., four prioritization scenarios). The extent of currently protected (GAP 1 or 2; IUCN Ia-VI) forestlands was determined for each ecoregion and then the highest-ranked unprotected forestlands were identified that could be preserved to meet the 30x30 and 50x50 targets using each prioritization scenario. This spatial dataset therefore identifies the locations of forestlands that could be strategically preserved to meet the 30x30 and 50x50 targets as prioritized using each of the four scenarios. Each raster covers forestlands across Oregon at 30 m x 30 m spatial resolution and is provided in GeoTiff format using an Albers Equal Area projection. These spatial data were produced by Law et al. (2022) and support efforts to preserve Oregon's forests for climate change mitigation and adaptation.
    Keywords: 30x30; 50x50; Binary Object; Binary Object (File Size); Binary Object (MD5 Hash); Binary Object (Media Type); Biodiversity; Carbon; climate change adaptation; climate change mitigation; global change; protected areas; spatial analysis
    Type: Dataset
    Format: text/tab-separated-values, 8 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-20
    Description: To support local to international actions on climate change mitigation and biodiversity conservation, this spatial dataset prioritizes forestlands for preservation in the Western United States. The need for joint climate change mitigation and biodiversity conservation has led to efforts to protect 30% of land area by 2030 (30x30) and 50% by 2050 (50x50). A crucial aspects of these efforts is prioritizing lands for new protection so they best achieve climate and biodiversity goals. We developed and applied a quantitative forest preservation priority ranking (PPR) system that incorporated existing geospatial datasets related to forest carbon, biodiversity, and future vulnerabilities to climate change across the Western United States. Specifically, the forest PPR system incorporated estimates of (1) current forest carbon stocks, (2) near-term forest carbon accumulation, (3) terrestrial vertebrate species richness by taxa, (4) tree species richness, and (5) near-term forest vulnerability to increasing mortality rates from drought or fire. Input datasets were re-gridded to a common 1 x 1 km (1 km2) spatial resolution and reflect contemporary (2000-2020) and near-future (2020-2050) forest conditions, with near-future conditions derived using land surface simulations from the Community Land Model (CLM 4.5). We applied the forest PPR system such that each patch of forest (i.e., a 1 km2 grid cell) was ranked relative to others in its ecoregion based on metrics of carbon and/or biodiversity both with and without considering future vulnerabilities (i.e., six scenarios). We assessed the extent of forestlands that are currently protected (GAP 1 or 2; IUCN Ia-VI) and then identified the highest-ranked unprotected forestlands that could be preserved to meet the 30x30 and 50x50 targets using each prioritization scenario. This spatial dataset thus includes the locations of forestlands that could be strategically preserved to meet the 30x30 and 50x50 targets as prioritized using six scenarios. Each raster is provided at 1 km2 resolution in an Albers Equal Area Projection (EPSG 9822) and covers forestlands that occur across the 11 contiguous western states (i.e., Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming). Raster files are in GeoTiff format. These spatial data were produced as part of Law et al. (2021) and support cross-scale efforts to preserve forests for climate change mitigation and biodiversity conservation.
    Keywords: 30x30; 50x50; Binary Object; Binary Object (File Size); Binary Object (MD5 Hash); Binary Object (Media Type); Biodiversity; Carbon; climate change mitigation; File content; global change; protected areas; spatial analysis; species richness
    Type: Dataset
    Format: text/tab-separated-values, 24 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Bulletin of the American Meteorological Society, American Meteorological Society, 104(9), pp. s1-s10, ISSN: 0003-0007
    Publication Date: 2024-05-29
    Description: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES〈/jats:p〉 〈jats:p〉Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.〈/jats:p〉 〈jats:p〉In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.〈/jats:p〉 〈jats:p〉Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.〈/jats:p〉 〈jats:p〉While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.〈/jats:p〉 〈jats:p〉The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.〈/jats:p〉 〈jats:p〉In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.〈/jats:p〉 〈jats:p〉In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.〈/jats:p〉 〈jats:p〉Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.〈/jats:p〉 〈jats:p〉A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.〈/jats:p〉 〈jats:p〉As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.〈/jats:p〉 〈jats:p〉In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.〈/jats:p〉 〈jats:p〉On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Bulletin of the American Meteorological Society, American Meteorological Society, 104(9), pp. s271-s321, ISSN: 0003-0007
    Publication Date: 2024-05-29
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...