GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Interferometry. ; Interferometers. ; Atoms -- Optical properties. ; Electronic books.
    Description / Table of Contents: The field of atom interferometry has expanded rapidly in recent years, and todays research laboratories are using atom interferometers both as inertial sensors and for precision measurements. Many researchers also use atom interferometry as a means of researching fundamental questions in quantum mechanics. Atom Interferometry contains contributions from theoretical and experimental physicists at the forefront of this rapidly developing field. Editor Paul R. Berman includes an excellent balance of background material and recent experimental results,providing a general overview of atom interferometry and demonstrating the promise that it holds for the future. Key Features * Includes contributions from many of the research groups that have pioneered this emerging field * Discusses and demonstrates new aspects of the wave nature of atoms * Explains the many important applications of atom interferometry, from a measurement of the gravitational constant to atom lithography * Examines applications of atom interferometry to fundamentally important quantum mechanics problems.
    Type of Medium: Online Resource
    Pages: 1 online resource (497 pages)
    Edition: 1st ed.
    ISBN: 9780080527680
    DDC: 539.7
    Language: English
    Note: Front Cover -- Atom Interferometry -- Copyright Page -- Contents -- Contributors -- Preface -- Chapter 1. Optics and Interferometry with Atoms and Molecules -- I. Introduction -- II. Beam Machine -- III. Optics for Atoms and Molecules -- IV. Interferometry with Atoms and Molecules -- V. Atom Interferometry Techniques -- VI. Measuring Atomic and Molecular Properties -- VII. Fundamental Studies -- VIII. Inertial Effects -- IX. Outlook -- Appendix: Frequently Used Symbols -- References -- Chapter 2. Classical and Quantum Atom Fringes -- I. Introduction -- II. Experimental Apparatus -- III. Classical Atom Fringes: The Moire Experiment -- IV. Quantum Fringes: The Interferometer -- V. Comparing Classical and Quantum Fringes: The Classical Analog to an Interferometer -- VI. Atoms in Light Crystals -- References -- Chapter 3. Generalized Talbot-Lau Atom Interferometry -- I. Introduction -- II. SBE Interferometry -- III. GTL Interferometry vs. SBE Interferometry -- IV. What Happens When Frauenhofer Diffraction Orders Overlap? -- V. Historical Development of the Generalized Talbot Effect -- VI. Spatial Properties of the Generalized Talbot Effect "Image -- VII. Wavelength Dependence of the Spatial Spectrum of the Fringe Intensity -- VIII. The Lau Effect -- IX. The Talbot Interferometer -- X. Generalized Lens-Free Talbot-Lau Interferometers -- XI. Fresnel Diffraction and the Talbot Effect with a Spatially Varying Potential -- XII. GTL Atom Interferometry Experiments with K and Li2 -- XIII. Talbot Interferometer Using Na -- XIV. "Heisenberg Microscope" Decoherence GTL Atom Interferometry -- XV. Conclusions and Future Applications -- Appendix: Kirchoff Diffraction with Spatially Varying V ( r ) -- References -- Chapter 4. Interferometry with Metastable Rare Gas Atoms -- I. Introduction -- II. Atomic Beam Source -- III. Young's Double-Slit Experiment. , IV. Holographic Manipulation of Atoms -- V. Two-Atom Correlation -- References -- Chapter 5. Classical and Nonclassical Atom Optics -- I. Introduction -- II. Models and Notation -- III. Atom Focusing and Applications -- IV. Correlation Experiments with Atoms and Photons -- V. Scheme for an Atomic Boson Laser -- References -- Chapter 6. Atom Interferometry and the Quantum Theory of Measurement -- I. Introduction -- II. Fundamental Physics and Atom Interferometers -- III. The Stern-Gerlach Interferometer -- IV. Conclusion -- References -- Chapter 7. Matter-Wave Interferometers: A Synthetic Approach -- I. Physics of the Generalized Beam Splitter -- II. Architecture of Interferometers -- III. Sensitivity to Gravitational and Electromagnetic Fields: A Unified Approach through the Dirac Equation -- IV. Conclusions and Directions of Future Progress -- References -- Chapter 8. Atom Interferometry Based on Separated Light Fields -- I. Introduction -- II. Theoretical Framework -- III. Discussion of Different Types of Interferometers -- IV. Experimental Realization of Borde Interferometry -- V. Precision Determination of Physical Quantities -- VI. Geometrical and Topological Phases -- VII. Influence of the Quantum-Mechanical Measurement Process in the Interferometer -- VIII. Applications of Atom Interferometry in Optical Frequency Standards -- IX. Conclusions -- References -- Chapter 9. Precision Atom Interferometry with Light Pulses -- I. Introduction -- II. Interferometer Theory -- III. Multiphoton Transitions -- IV. Inertial Force Measurements -- V. Photon-Recoil Measurement -- VI. Experimental Techniques -- VII. Conclusions -- References -- Chapter 10. Atom Interference Using Microfabricated Structures -- I. Introduction -- II. Qualitative Considerations -- III. Talbot Effect -- IV. Shadow Effect with Microfabricated Structures -- V. Talbot-Lau Effect. , VI. Talbot and Talbot-Lau Effects in a Thermal Atomic Beam -- VII. Conclusions -- Appendix -- References -- INDEX.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Nuclear physics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (421 pages)
    Edition: 1st ed.
    ISBN: 9780124081109
    Series Statement: Issn Series
    DDC: 539
    Language: English
    Note: Intro -- Half Title -- Editors -- Title Page -- Copyright -- Contents -- Contributors -- Preface -- 1 Ultracold Few-Body Systems -- 1 Introduction -- 2 Interactions in Ultracold Gases -- 2.1 External Field Control of Interatomic Interactions -- 2.2 Interaction Models -- 2.2.1 The Zero-Range Model -- 2.2.2 Single and Multichannel Models -- 3 Efimov Physics in Ultracold Quantum Gases -- 3.1 Methods to Explore Three-Body Systems -- 3.1.1 Hyperspherical Coordinates -- 3.1.2 Other Methods for Solving the Few-Body Schrödinger Equation -- 3.1.3 Analytically Extracting Ultracold Inelastic Rates -- 3.2 The Efimov Effect vs Efimov Physics -- 3.2.1 Conditions for the Efimov Effect -- 3.2.2 Ultracold Three-Body Scattering Rates -- 3.3 Experimental Observations in Ultracold Gases -- 4 Beyond the Efimov Scenario -- 4.1 Efimov Effect at Finite Scattering Energies -- 4.1.1 Energy-Dependent Efimov Features When a> -- 0 -- 4.1.2 Energy-Dependent Efimov Features When a< -- 0 -- 4.1.3 Observing Finite Energy Efimov Features via BEC Collisions -- 4.2 Finite-Range Effects -- 4.3 Efimov Physics for Narrow Feshbach Resonances -- 4.3.1 Three Identical Bosons BBB -- 4.3.2 Two-Component Fermion Systems FFF' -- 4.4 Efimov Physics Beyond Three-Body Systems -- 4.4.1 Universal Four-Body States for Identical Bosons -- 4.4.2 Four-Body Efimov Physics for BBBL Systems -- 4.4.3 Four-Body ``Efimov Effect'' in FFFL Systems -- 4.4.4 Not Too Few, But Not So Many -- 4.5 Forms of Interactions Beyond Efimov -- 4.5.1 Three-Body States with -1/r Two-Body Interactions -- 4.5.2 Three-Body States with -1/r2 Two-Body Interactions -- 5 Other Three-Body Systems Relevant for Cold Atom Physics -- 5.1 Three Helium Atoms -- 5.2 Three-Body Systems with Alkali-Metal and Helium or Hydrogen Atoms -- 6 Outlook -- Acknowledgments -- References -- 2 Shortcuts to Adiabaticity -- 1 Introduction. , 2 General Formalisms -- 2.1 Invariant-Based Inverse Engineering -- 2.2 Counterdiabatic or Transitionless Tracking Approach -- 2.3 Fast-Forward Approach -- 2.4 Alternative Shortcuts Through Unitary Transformations -- 2.5 Optimal Control Theory -- 3 Expansions of Trapped Particles -- 3.1 Transient Energy Excitation -- 3.2 Three-Dimensional Effects -- 3.3 Bose-Einstein Condensates -- 3.4 Strongly Correlated Gases -- 3.5 Experimental Realization -- 3.6 Optimal Control -- 3.7 Other Applications -- 4 Transport -- 4.1 Invariant-Based Shortcuts for Transport -- 4.2 Transport of a Bose-Einstein Condensate -- 5 Internal State Engineering -- 5.1 Population Inversion in Two-Level Systems -- 5.2 Effect of Noise and Perturbations -- 5.3 Three-Level Systems -- 5.4 Spintronics -- 5.5 Experiments -- 6 Wavepacket Splitting -- 7 Discussion -- Acknowledgments -- References -- 3 Excitons and Cavity Polaritons for Optical Lattice Ultracold Atoms -- 1 Introduction -- 2 Ultracold Atoms in an Optical Lattice as Artificial Crystals -- 2.1 Superfluid to Mott-Insulator Transitions -- 2.2 Mott Insulator for a Two-Component Bose-Hubbard Model -- 3 Excitons in Optical Lattices -- 3.1 Resonance Dipole-Dipole Interactions -- 3.2 One-Dimensional Atomic Chains -- 3.3 Two-Dimensional Planar Optical Lattices -- 3.4 Radiative Decay of Excitons -- 3.5 Excitons in Optical Lattices with Two Atoms per Site -- 3.6 Coherent Transfer of Excitons among Optical Lattices -- 4 Cavity QED with Excitons: Polaritons -- 4.1 Quantum Phases for an Optical Lattice Within a Cavity -- 4.2 Cavity Polaritons of Planar Two-Dimensional Optical Lattices -- 4.2.1 Two Atoms per Site Optical Lattice in a Planar Cavity -- 4.3 Optical Lattices with Oriented Dipoles -- 4.4 Finite Atomic Chain in an Optical Cavity -- 4.5 One-Dimensional Optical Lattice Coupled to a Tapered Nanofiber. , 5 Optical Lattices with Defects: Beyond the Mott Insulator State -- 5.1 Collective States of Atoms Excited into Higher Bloch Bands -- 5.2 Excitons and Polaritons Scattering by Defects in the Mott Insulator -- 6 Conclusions -- Acknowledgments -- References -- 3 Quantum Science and Metrology with Mixed-Species Ion Chains -- 1 Introduction -- 2 Normal Modes of Mixed-Species Chains -- 2.1 Mass-Dependent Potentials and Stability -- 2.2 Stability of Ion Motion -- 2.3 Normal Mode Analysis -- 2.4 Normal Mode Characteristics -- 2.5 Shifts in Normal Modes Due to Additional Effects -- 2.6 Normal Mode Diagnostics -- 2.7 Compensation of Stray Fields -- 3 Sympathetic Cooling -- 3.1 Laser Cooling of Mixed-Ion Chains -- 3.2 Heating Due to Fluctuating Electric Fields -- 3.3 Improving Cooling Rates for Radial Modes -- 4 Re-Ordering Ions of Different Mass -- 4.1 Symmetric Ordering, Heavy Ions Centered -- 4.2 Asymmetric Ordering -- 5 Quantum Logic Readout -- 5.1 Population-Preserving ``Non-Demolition'' Readout -- 5.2 Readout Using Coherent State-Dependent Forces -- 6 Quantum Computation -- 6.1 Experimental Demonstrations -- 7 Quantum State Engineering -- 7.1 Motional State Engineering -- 7.2 Entanglement of Internal States -- 8 Molecular Cooling and Control -- 9 Outlook -- Acknowledgments -- References -- 5 Limits to Resolution of CW STED Microscopy -- 1 Introduction -- 2 Theory -- 3 Experiment Setup -- 4 Results -- 5 Summary and Outlook -- Appendix A Confocal Resolution -- Appendix B Debye Diffraction Integral -- Appendix C Optimal Filling of the Objective -- Acknowledgments -- References -- 6 Ultrafast High Power and Stabilized Semiconductor Diode Lasers-Physics, Techniques, and Applications in Coherent Signal Processing -- 1 Introduction -- 2 Background Physics -- 2.1 Concept of Classic Gain Saturation versus Carrier Heating Induced Gain Saturation. , 2.2 Linear and Nonlinear Effects Induced by Gain Dynamics-Dispersion and Self-Phase Modulation -- 2.2.1 Self-Phase Modulation -- 2.2.2 Linear Dispersion -- 2.2.3 Saturable Absorption -- 2.3 Harmonic Mode-Locking and Low Noise Operation -- 2.4 Summary of Underlying Concepts -- 3 Experimental Configurations for Mode-Locked Semiconductor Diode Lasers -- 3.1 Dispersion Managed (Breathing Mode) Mode-Locked Diode Laser -- 3.2 High Pulse Energies-Extreme Chirped Pulse Amplification -- 3.3 The Theta Laser: An XCPA Oscillator -- 3.3.1 Theta Laser Performance -- 3.4 Low Noise Laser -- 3.5 Concluding Remarks on Pulse Generation Methods and Results -- 4 Applications -- 4.1 OAWG Theory -- 4.1.1 Time-Domain Interleaving for Arbitrary Sine Waves and Chirps -- 4.2 Pulse-Shaping -- 4.3 Arbitrary Waveform Measurement -- 4.3.1 Conceptual Description -- 4.3.2 Specific Experimental Examples -- 4.4 Matched Filtering -- 4.4.1 Coherent Detection Method for Code Discrimination -- 4.4.2 Experimental Configuration and Results -- 5 Summary, Concluding Remarks, and Future Directions -- Acknowledgments -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Z -- Contents of Volumes In This Serial.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Atoms. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (749 pages)
    Edition: 1st ed.
    ISBN: 9780080467375
    Series Statement: Issn Series
    DDC: 539
    Language: English
    Note: Front cover -- Title page -- Copyright page -- Contents -- Contributors -- Preface -- Chapter 1. Experimental Realization of the BCS-BEC Crossover with a Fermi Gas of Atoms -- 1. Introduction -- 2. BCS-BEC Crossover Physics -- 3. Feshbach Resonances -- 4. Cooling a Fermi Gas and Measuring its Temperature -- 5. Elastic Scattering near Feshbach Resonances between Fermionic Atoms -- 6. Creating Molecules from a Fermi Gas of Atoms -- 7. Inelastic Collisions near a Fermionic Feshbach Resonance -- 8. Creating Condensates from a Fermi Gas of Atoms -- 9. The Momentum Distribution of a Fermi Gas in the Crossover -- 10. Conclusions and Future Directions -- 11. Acknowledgements -- 12. References -- Chapter 2. Deterministic Atom-Light Quantum Interface -- 1. Introduction -- 2. Atom-Light Interaction -- 3. Quantum Information Protocols -- 4. Experimental Methods -- 5. Experimental Results -- 6. Conclusions -- 7. Acknowledgements -- 8. Appendices -- A. Effect of Atomic Motion -- B. Technical Details -- 9. References -- Chapter 3. Cold Rydberg Atoms -- 1. Introduction -- 2. Preparation and Analysis of Cold Rydberg-Atom Clouds -- 3. Collision-Induced Rydberg-Atom Gas Dynamics -- 4. Towards Coherent Control of Rydberg-Atom Interactions -- 5. Rydberg-Atom Trapping -- 6. Experimental Realization of Rydberg-Atom Trapping -- 7. Landau Quantization and State Mixing in Cold, Strongly Magnetized Rydberg Atoms -- 8. Conclusion -- 9. Acknowledgements -- 10. References -- Chapter 4. Non-Perturbative Quantal Methods for Electron-Atom Scattering Processes -- 1. Introduction -- 2. The Configuration-Average Distorted-Wave Method -- 3. The R-Matrix with Pseudo-States Method -- 4. The Time-Dependent Close-Coupling Method -- 5. Results -- 6. Summary -- 7. Acknowledgements -- 8. References -- Chapter 5. R-Matrix Theory of Atomic, Molecular and Optical Processes -- 1. Introduction. , 2. Electron Atom Scattering at Low Energies -- 3. Electron Scattering at Intermediate Energies -- 4. Atomic Photoionization and Photorecombination -- 5. Electron Molecule Scattering -- 6. Positron Atom Scattering -- 7. Atomic and Molecular Multiphoton Processes -- 8. Electron Energy Loss from Transition Metal Oxides -- 9. Conclusions -- 10. Acknowledgements -- 11. References -- Chapter 6. Electron-Impact Excitation of Rare-Gas Atoms from the Ground Level and Metastable Levels -- 1. Introduction -- 2. Electronic Structure -- 3. Experimental Methods -- 4. Background: Excitation of Helium and the Multipole Field Picture -- 5. Argon -- 6. Neon -- 7. Krypton -- 8. Xenon -- 9. Comparison to Theoretical Calculations -- 10. Conclusions -- 11. Acknowledgements -- 12. References -- Chapter 7. Internal Rotation in Symmetric Tops -- 1. Introduction -- 2. Theory -- 3. Spectroscopy from 50 kHz to 1000 cm-1 -- 4. Discussion -- 5. Acknowledgements -- 6. References -- Chapter 8. Attosecond and Angstrom Science -- 1. Introduction -- 2. Tunnel Ionization and Electron Re-collision -- 3. Producing and Measuring Attosecond Optical Pulses -- 4. Measuring an Attosecond Electron Pulse -- 5. Attosecond Imaging -- 6. Imaging Electrons and Their Dynamics -- 7. Conclusion -- 8. References -- Chapter 9. Atomic Processing of Optically Carried RF Signals -- 1. Introduction -- 2. Radio Frequency Spectral Analyzers -- 3. Spectrum Photography Architecture -- 4. Frequency Selective Materials as Programmable Filters -- 5. Rainbow Analyzer -- 6. Photon Echo Chirp Transform Spectrum Analyzer -- 7. Frequency Agile Laser Technology -- 8. Conclusion -- 9. Acknowledgements -- 10. References -- Chapter 10. Controlling Optical Chaos, Spatio-Temporal Dynamics, and Patterns -- 1. Introduction -- 2. Recent Examples -- 3. Control -- 4. Synchronization -- 5. Communication. , 6. Spatio-Temporal Chaos and Patterns -- 7. Outlook -- 8. Acknowledgement -- 9. References -- Index -- Contents of Volumes in this Serial.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Nuclear physics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (473 pages)
    Edition: 1st ed.
    ISBN: 9780128003015
    Series Statement: Issn Series
    DDC: 539
    Language: English
    Note: Front Cover -- Advances in Atomic, Molecular, and Optical Physics -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Detection of Metastable Atoms and Molecules using Rare Gas Matrices -- 1. Introduction -- 2. Basic Concepts -- 2.1 Relevant Background -- 2.2 Principle of Operation of the Detector -- 3. Experimental Details -- 3.1 TOF Spectroscopy -- 3.2 Apparatus Details -- 3.3 Apparatus Performance -- 3.3.1 Spectral Output -- 3.3.2 Temperature Variation -- 3.3.3 Excimer Lifetimes -- 4. Calibrations -- 4.1 Calibration of O(1S) Production -- 4.2 Calibration of O(1D) Production -- 4.2 Calibration of the Electron Energy Scale -- 5. O(1S) Measurements -- 5.1 O2 -- 5.2 N2O -- 5.3 CO2 -- 5.4 CO -- 5.5 NO -- 5.6 H2O, D2O -- 5.7 SO2 -- 6. O(1D) Measurements -- 7. Sulfur Measurements -- 8. CO Measurements -- 9. Future Possibilities -- References -- Chapter Two: Interactions in Ultracold Rydberg Gases -- 1. Introduction -- 2. Pair Interactions -- 2.1 Rydberg Pair Interaction and Important Issues -- 2.2 Calculation of Rydberg Pair Interactions -- 2.3 Angular Dependence -- 2.4 Experiments -- 3. Rydberg Atom Molecules -- 3.1 Trilobite Molecules -- 3.1.1 The Fermi Pseudo-Potential Picture of Trilobite Molecules -- 3.1.2 The Multichannel Quantum Defect Approach to Trilobite Molecules -- 3.1.3 External Fields -- 3.1.4 Features of the Trilobite Interaction Potentials -- 3.1.5 Molecular Frame Permanent Dipole Moments -- 3.1.6 Experimental Measurement of Trilobite Molecules -- 3.2 Macrodimers -- 3.2.1 Theory of Macrodimers -- 3.2.2 Experimental Detection of Macrodimers -- 4. Many-Body and Multiparticle Effects -- 4.1 Förster Resonance -- 4.2 Dipole Blockade -- 5. Conclusion and Perspectives -- Chapter Three: Atomic, Molecular, and Optical Physics in the Early Universe: From Recombination to Reionization -- 1. Introduction. , 1.1 The Expanding Universe -- 1.2 The Thermal History of the Universe -- 1.3 The Need for Dark Matter -- 1.4 The Role of AMO Physics -- 1.5 Distance Measurements -- 1.6 Acronyms and Variables -- 2. Cosmological Recombination -- 2.1 What Is Cosmological Recombination All About? -- 2.1.1 Initial Conditions and Main Aspect of the Recombination Problem -- 2.1.2 The Three Stages of Recombination -- 2.1.3 What Is So Special About Cosmological Recombination? -- 2.2 Why Should We Bother? -- 2.2.1 Importance of Recombination for the CMB Anisotropies -- 2.2.2 Spectral Distortions from the Recombination Era -- 2.3 Why Do We Need Advanced Atomic Physics? -- 2.4 Simple Model for Hydrogen Recombination -- 2.5 Multilevel Recombination Model and Recfast -- 2.6 Detailed Recombination Physics During Hi Recombination -- 2.6.1 Two-Photon Transitions from Higher Levels -- 2.6.2 The Effect of Raman Scattering -- 2.6.3 Additional Small Corrections and Collision -- 2.7 Detailed Recombination Physics During Hei Recombination -- 2.8 HyRec and CosmoRec -- 3. Pregalactic Gas Chemistry -- 3.1 Fundamentals -- 3.2 Key Reactions -- 3.2.1 Molecular Hydrogen (H2) -- 3.2.2 Deuterated Molecular Hydrogen (HD) -- 3.2.3 Lithium Hydride -- 3.3 Complications -- 3.3.1 Spectral Distortion of the CMB -- 3.3.2 Stimulated Radiative Association -- 3.3.3 Influence of Rotational and Vibrational Excitation -- 4. Population III Star Formation -- 4.1 The Assembly of the First Protogalaxies -- 4.2 Gravitational Collapse and Star Formation -- 4.2.1 The Initial Collapse Phase -- 4.2.2 Three-Body H2 Formation -- 4.2.3 Transition to the Optically Thick Regime -- 4.2.4 Cooling at Very High Densities -- 4.2.5 Influence of Other Coolants -- 4.3 Evolution After the Formation of the First Protostar -- 5. The 21-cm Line of Atomic Hydrogen -- 5.1 Physics of the 21-cm Line -- 5.1.1 Basic 21-cm Physics. , 5.1.2 Collisional Coupling -- 5.1.3 Wouthuysen-Field Effect (Photon Coupling) -- 5.2 Global 21-cm Signature -- 5.2.1 Cosmic Dark Ages and Exotic Heating (zbold0mu mumu dotted40) -- 5.2.2 Lyman-α Coupling (zα z z ) -- 5.2.3 Gas Heating (zh z zα) -- 5.2.4 Growth of H II Regions (zr z zh) -- 5.2.5 Astrophysical Sources and Histories -- 5.3 21-cm Tomography -- 5.3.1 Fluctuations in the Spin Temperature -- 5.3.2 Gas Temperature -- 5.3.3 Ionization Fluctuations -- 5.3.4 Density and Minihalos -- 5.3.5 Redshift Space Distortions -- 6. The Reionization of Intergalactic Hydrogen -- 6.1 Sources of Reionization: Stars -- 6.2 Sources of Reionization: Quasars -- 6.2.1 Secondary Ionizations -- 6.3 The Growth of Ionized Bubbles -- 6.3.1 Photoionization Rates and Recombinations -- 6.3.2 Line Cooling -- 6.4 Reionization as a Global Process -- 7. Summary -- Appendix A. Acronyms -- Appendix B. Symbols -- Chapter Four: Atomic Data Needs for Understanding X-ray Astrophysical Plasmas -- 1. Introduction -- 2. Charge State Distribution -- 2.1 Ionization Processes -- 2.1.1 Collisional Ionization -- 2.1.2 Photoionization -- 2.1.3 Auger Ionization -- 2.2 Recombination -- 2.2.1 Dielectronic Recombination -- 2.2.2 Radiative Recombination -- 2.3 Charge Exchange -- 2.4 Future Needs -- 3. Spectral Features -- 3.1 Energy Levels and Wavelengths -- 3.2 Collisional Excitation Rates -- 3.2.1 H-Like Ions -- 3.2.2 He-Like Ions -- 3.2.3 Neon-Like Ions -- 3.2.4 Other Ions -- 3.3 Radiative Transition Rates (Bound-Bound) -- 3.4 Photoionization/Absorption (Bound-Free) Rates -- 3.5 Fluorescent Innershell Transitions -- 3.6 Charge Exchange Rates -- 3.6.1 Atoms and Ions -- 3.6.2 Molecules and Grains -- 4. Conclusions -- Chapter Five: Energy Levels of Light Atoms in Strong Magnetic Fields -- 1. Introduction -- 2. Historical Background -- 3. The Lightest ``Light'' Atom-Hydrogen. , 4. Light Atoms: Two and Few-Electron Systems -- 5. Concluding Remarks and Future Prospects -- Chapter Six: Quantum Electrodynamics of Two-Level Atoms in 1D Configurations -- 1. Introduction -- 2. The 1D Kernel and Its Spectral Decomposition -- 2.1 Form of the Lienard-Wiechert Kernel in 1D (Friedberg and Manassah, 2008c) -- 2. 2 Initial Time CDR and CLS of a Slab (Friedberg et al., 1973) -- 2.3 Eigenfunctions and Eigenvalues of a Slab (Friedberg and Manassah, 2008c,d,e) -- 2.3.1 Functional Form of the Eigenfunctions -- 2.3.2 Pseudo-Orthogonality Relations -- 2.3.2.1 Odd Eigenfunctions -- 2.3.2.1 Even Eigenfunctions -- 2.3.3 Parseval´s Identity -- 2.4 Differential Form of the Field Equation (Friedberg and Manassah, 2008c) -- 2.5 Inverted System in the Superradiant Linear Regime (Friedberg and Manassah, 2008e) -- 2.6 Comments on the Numerical Results of Superradiance from a Slab -- 3. Propagation of an Ultrashort Pulse in a Slab and the Ensuing Emitted Radiation Spectrum -- 3.1 Time Development and Spectrum of the Radiation Emitted -- 3.1.1 Spectral Analysis (Friedberg and Manassah, 2008d, 2009b) -- 3.1.2 Computation of the Electric Field at the End Planes -- 3.2 The SVEA Closed-Form Expressions (Manassah, 2012a) -- 3.3 The Modified SVEA Closed-Form Expressions (Manassah, 2012b) -- 3.4 Self-Energy of an Initially Detuned Phased State (Friedberg and Manassah, 2010a) -- 3.5 Spectral Distribution of an Initially Detuned Spatial Distribution -- 4. Near-Threshold Behavior for the Pumped Stationary State -- 4.1 Coupled Maxwell-Bloch Equations -- 4.2 Single-Frequency Lasing -- 4.2.1 Single-Frequency Bare Mode -- 4.2.2 Single-Frequency Dressed Mode -- 4.3 Two-Frequency Bare Modes -- 4.4 General Comments -- 5. Polariton-Plasmon Coupling, Transmission Peaks, and Purcell-Dicke Ultraradiance -- 5.1 The Total Transfer Matrix -- 5.2 The Mittag-Leffler Expansion. , 5.3 Interacting Polariton-Plasmon Modes -- 6. Periodic Structures -- 6.1 Density-Modulated Slab (Manassah, 2012e) -- 6.1.1 The Self-Energy at Initial Time -- 6.1.2 Simple Mathematical Analysis for the Giant Shifts -- 6.2 Periodic Multislabs Eigenvalues (Friedberg and Manassah, 2008f) -- 6.2.1 Eigenvalue Condition -- 6.2.2 Precocious Superradiance -- 6.2.3 Eigenvalues at the Bragg Condition as a Function of the Number of Cells -- 7. Conclusion -- Acknowledgments -- Appendix. Transfer Matrix Formalism -- Some Useful Relations of the Pauli Matrices -- Example of an Application of Above Formalism -- References -- Index -- Contents of volumes in this serial.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Nuclear physics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (371 pages)
    Edition: 1st ed.
    ISBN: 9780123810304
    Series Statement: Issn Series
    DDC: 539
    Language: English
    Note: Front cover -- Half title page -- Editorial Board -- Title page -- Copyright page -- Contents -- Contributors -- Preface -- Chapter 1. Simultaneous Emission of Multiple Electrons from Atoms and Molecules Using Synchrotron Radiation -- 1. Introduction -- 2. Experimental Considerations -- 3. Double Photoionization of Helium -- 4. Double Photoionization of Heavier Elements -- 5. Triple Photoionization of Atoms -- 6. Multiple Photoionization of Molecules -- 7. Conclusions and Outlook -- Acknowledgments -- References -- Chapter 2. CP-violating Magnetic Moments of Atoms and Molecules -- 1. Introduction -- 2. T,P-violating Electrodynamics -- 3. Fundamental Mechanisms of P and T Violation -- 4. CP-violating Polarizability of Diamagnetic Atoms -- 5. CP-violating Magnetic Moment of Diamagnetic Molecules -- 6. Thermally-induced CP-violating Magnetization of Paramagnetic Molecules -- 7. Conclusion -- Acknowledgments -- References -- Chapter 3. Superpositions of Degenerate Quantum States: Preparation and Detection in Atomic Beams -- 1. Introduction -- 2. Basic Concepts and Equations -- 3. Stimulated Raman Adiabatic Passage (STIRAP) -- 4. Preparation of Degenerate Coherent Superpositions in Metastable Neon -- 5. Analysis of STIRAP-produced Superpositions in Metastable Neon -- 6. Experimental Results -- 7. Extensions and Applications -- 8. Outlook -- Acknowledgments -- References -- Chapter 4. Atom Trap Trace Analysis of Rare Noble Gas Isotopes -- 1. Introduction -- 2. Rare Noble Gas Isotopes in the Environment -- 3. Earlier Detection Methods -- 4. Atom Trap Trace Analysis (ATTA) -- 5. Applications of ATTA -- 6. Conclusion and Outlook -- Acknowledgements -- References -- Chapter 5. Cavity Optomechanics with Whispering-Gallery Mode Optical Micro-Resonators -- 1. Introduction -- 2. Theory of Optomechanical Interactions. , 3. Whispering-gallery Mode Microresonators as Optomechanical Systems -- 4. Ultrahigh-Sensitivity Interferometric Motion Transduction -- 5. Observation of Dynamical Backaction -- 6. Resolved-Sideband Cooling -- 7. Approaching the Quantum Ground State -- 8. Conclusion -- 9. Outlook -- Acknowledgements -- References -- Index -- Contents of volumes in this serial.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Nuclear physics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (453 pages)
    Edition: 1st ed.
    ISBN: 9780080460253
    Series Statement: Issn Series
    DDC: 539
    Language: English
    Note: Intro -- Contents -- Contributors -- Exploring Quantum Matter with Ultracold Atoms in Optical Lattices -- Introduction -- Optical Lattices -- Optical Dipole Force -- Optical Lattice Potentials -- 1D Lattice Potentials -- 2D Lattice Potentials -- 3D Lattice Potentials -- Spin-Dependent Optical Lattice Potentials -- Bose-Einstein Condensates in Optical Lattices -- Bloch Bands -- Wannier Functions -- Ground State Wave Function of a BEC in an Optical Lattice -- Discretization -- Ground State -- Adiabatic Mapping of Crystal Momentum to Free Particle Momentum -- Bose-Hubbard Model of Interacting Bosons in Optical Lattices -- Ground States of the Bose-Hubbard Hamiltonian -- Double Well Case -- Multiple Well Case -- SF-MI Transition in Inhomogeneous Potentials -- Superfluid to Mott Insulator Transition -- Collapse and Revival of a Macroscopic Quantum Field -- Quantum Gate Arrays via Controlled Collisions -- Spin-Dependent Transport -- Controlled Collisions -- Using Controlled Collisional Quantum Gates -- Outlook -- Acknowledgements -- References -- The Kicked Rydberg Atom -- Introduction -- Impulsively-Driven or ``Kicked'' Systems -- Related Problems -- Realization of the Impulsive Limit -- Experimental Apparatus -- Freely-Propagating Half-Cycle Pulses -- Studies at Very-High n -- Creation of Quasi-One-Dimensional Atoms -- Effect of a Single HCP -- Energy Transfer and Ionization -- Wavepacket Production and Evolution -- Characterization of Quasi-1D Atoms -- Effect of Multiple HCPs -- Dynamical Stabilization -- 3D Atoms -- 1D and Quasi-1D Atoms: Effect of Kick Direction -- Classical-Quantum Correspondence -- Freely-Propagating Attosecond HCP Trains -- Alternating Kicks -- Phase-Space Localization -- Dynamical Filtering -- Navigating in Phase-Space -- Transient Phase-Space Localization -- Outlook -- Atomic Engineering. , Classical Limit of Quantum Mechanics -- Further Applications -- Acknowledgements -- References -- Photonic State Tomography -- State Representation -- Representation of Single-Qubit States -- Pure States, Mixed States, and Diagonal Representations -- The Stokes Parameters and the Poincaré Sphere -- Representation of Multiple Qubits -- Pure States, Mixed States, and Diagonal Representations -- Fidelity. -- Tangle. -- Entropy and the linear entropy. -- Multiple Qubit Stokes Parameters -- Representation of Nonqubit Systems -- Pure, Mixed, and Diagonal Representations -- Qudit Stokes Parameters -- Tomography of Ideal Systems -- Single-Qubit Tomography -- Visualization of Single-Qubit Tomography -- A Mathematical Look at Single-Qubit Tomography -- Multiple-Qubit Tomography -- Tomography of Nonqubit Systems -- General Qubit Tomography -- Collecting Tomographic Measurements -- Projection -- Arbitrary Single-Qubit Projection -- Compensating for Imperfect Waveplates -- Wedged waveplates -- Multiple-Qubit Projections and Measurement Ordering -- n vs. 2n Detectors -- Electronics and Detectors -- Collecting Data and Systematic Error Correction -- Accidental Coincidences -- Beamsplitter Crosstalk -- Detector-Pair Efficiency Calibration -- Intensity Drift -- Analyzing Experimental Data -- Types of Errors and State Estimation -- The Maximum Likelihood Technique -- Optimization Algorithms and Derivatives of the Fitness Function -- Choice of Measurements -- How Many Measurements? -- How Many Counts per Measurement? -- Error Analysis -- A Complete Example of Tomography -- Outlook -- Acknowledgements -- References -- Fine Structure in High-L Rydberg States: A Path to Properties of Positive Ions -- Introduction -- Experimental Methods -- Early Studies -- Stepwise Excitation Microwave Studies -- Resonant Excitation Stark Ionization Spectroscopy (RESIS). , Other Experimental Methods -- Theoretical Methods -- Long-Range Model for Atoms -- Adiabatic Model with S-State Cores -- Nonadiabatic Corrections -- Other Corrections -- Core penetration and exchange -- Second-order polarization energies -- Spin Structure -- Tensor Fine Structure -- Long-Range Model for H2 -- Coulomb Interactions -- Spin and Hyperfine Interactions -- Comparison with Traditional Methods -- Results -- Theoretical Progress -- Relativistic corrections. -- Retardation corrections. -- Reduced mass corrections. -- Lamb shift corrections. -- Ion Property Measurements -- Dipole Polarizability -- Quadrupole Moments -- Other Ion Properties -- Applications -- Summary and Outlook -- Acknowledgements -- References -- A Storage Ring for Neutral Molecules -- Introduction -- Manipulating Polar Molecules -- The Stark Effect in Deuterated Ammonia -- Focusing a Beam of Polar Molecules -- Decelerating and Trapping of Polar Molecules -- A Storage Ring for Polar Molecules -- Manipulating Polar Molecules in Phase Space -- Phase-Space Matching -- Phase-Space Transformations -- A Prototype Storage Ring for Neutral Molecules -- Motion of Molecules in a Hexapole Ring -- Equilibrium Orbit -- Betatron Oscillations -- Motion of Molecules in the Dipole Ring -- Experimental Set-up -- Results and Discussion -- Longitudinal Focusing and Cooling of a Molecular Beam -- Principle and Design of the Buncher -- Longitudinal Focusing of a Molecular Beam -- Longitudinal Cooling of a Molecular Beam -- Dynamics of Molecules in the Storage Ring -- Experimental Setup and Alternative Bunching Scheme -- Longitudinal Temperature of Molecules in the Ring -- Betatron Oscillations in the Dipole Ring -- Betatron Oscillations in the Hexapole Ring -- Design of a Sectional Storage Ring -- Transverse Stability in a Sectional Storage Ring -- A Linear Array of Hexapoles -- Bend Hexapoles. , Longitudinally Focusing in a Sectional Ring -- Conclusions and Outlook -- Acknowledgements -- References -- Nonadiabatic Alignment by Intense Pulses. Concepts, Theory, and Directions -- Preliminaries -- Basic Concepts -- Rotational Excitation and Coherent Alignment -- Time Evolution -- Role of the Molecular Symmetry. From Diatomic Molecules to Complex Systems -- Role of the Field Polarization. Three-Dimensional Alignment -- Molecular Orientation -- Alignment in Dissipative Media -- Theory -- General Formulation -- Nonresonant, Nonadiabatic Alignment -- Numerical Implementation -- Case Studies -- Recent Developments -- Conclusions and Outlook -- Acknowledgements -- Derivation of Equation (5) -- References -- Relativistic Nonlinear Optics -- Orientation and Background -- Introduction to Relativistic Optics and High Field Science -- Guiding Principles of Laser Plasma Physics -- Single-Particle Motion -- Constants of the Motion -- Role of Initial Phase -- Direct Laser Acceleration of Electrons in Vacuum -- Self-Modulated Laser Wakefield Electron Beam Characterization -- A General Plane Wave Electron Scattering Model -- Nonparaxial Solutions of the Maxwell Wave Equation -- Series Solution of the Wave Equation for Monochromatic Beams -- A Spectral Method Solution of the Wave Equation -- The Solution Assuming a Gaussian Laser at Focus -- Comparison of the Series and Spectral Solutions -- The Asymmetric Laser Field Solutions -- The Symmetric Laser Field Solutions -- The Solution Assuming a Flattened Gaussian Laser at Focus -- Radiation from Relativistic Electrons -- Collective Plasma Response -- Propagation -- Relativistic Self-focusing -- Raman Scattering, Plasma Wave Excitation and Electron Acceleration -- Relativistic Phase Modulation -- Interactions with Solid-Density Targets -- Concluding Remark -- Acknowledgements -- References. , Coupled-State Treatment of Charge Transfer -- Introduction -- Coupled-State Treatments -- Impact-Parameter Approaches -- Atomic-State and Atomic-Pseudostate Approaches -- Two-center -- Atomic-state. -- Atomic-plus-pseudostate. -- Continuum-distorted-wave. -- Three-center -- Molecular-State Approaches -- Perturbed-stationary-state -- Plane-wave-factor, molecular-state -- Molecular-state with other a priori translational factors -- Molecular-state with optimized or variationally determined translational factors -- Hylleraas -- Three-center molecular-state -- Two-Center, Momentum-Space Approach -- Quantum Approaches -- Translational Factor Approaches -- Common-Reaction-Coordinate Method -- Hidden Crossing Approach -- Hyperspherical Approach -- Results -- The alphaH System -- Charge Transfer to All States -- Intermediate energies -- Lower energies -- Charge Transfer to the 2s and 2p States -- The pHe+ System -- The pH System -- Charge Transfer to All States -- Charge Transfer to the Ground State -- Charge Transfer to the 2s and 2p States -- Conclusion -- References -- Index -- Contents of Volumes in this Serial.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Atoms. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (499 pages)
    Edition: 1st ed.
    ISBN: 9780080554907
    Series Statement: Issn Series
    DDC: 539
    Language: English
    Note: Cover -- Contents -- Contributors -- Chapter 1. Direct frequency comb spectroscopy -- 1. Introduction and Historical Background -- 2. Comb Control and Detection -- 3. Direct Frequency Comb Spectroscopy -- 4. Multi-Frequency Parallel Spectroscopy -- 5. Coherent Control Applications -- 6. Future Outlook -- 7. Concluding Remarks -- 8. Acknowledgements -- 9. References -- Chapter 2. Collisions, correlations, and integrability in atom waveguides -- 1. Introduction -- 2. Effective 1D World -- 3. Bethe Ansatz and beyond -- 4. Ground State Properties of Short-Range-Interacting 1D Bosons: Known Results and Their Experimental Verification -- 5. What Is Special about Physics in 1D -- 6. Summary and Outlook -- 7. Acknowledgements -- 8. Appendix: Some Useful Properties of the Hurwitz Zeta Function -- 9. References -- Chapter 3. MOTRIMS: Magneto-Optical Trap Recoil Ion Momentum Spectroscopy -- 1. Introduction to MOTRIMS -- 2. Relative Total Electron Transfer Cross Sections -- 3. Case Studies in Total Electron Transfer Collisions -- 4. Case Studies of Differential Electron Transfer Cross Sections -- 5. Probing Excitation Dynamics -- 6. Future Applications -- 7. Concluding Comments -- 8. Acknowledgements -- 9. References -- Chapter 4. All-Order Methods for Relativistic Atomic Structure Calculations -- 1. Introduction and Overview -- 2. Relativistic Many-Body Perturbation Theory -- 3. Relativistic SD All-Order Method -- 4. Motivation for Further Development of the All-Order Method -- 5. Recent Developments in the Calculations of Monovalent Systems: Non-Linear Terms and Triple Excitations -- 6. Many-Particle Systems -- 7. Applications of High-Precision Calculations -- 8. Conclusion -- 9. Acknowledgements -- 10. References -- Chapter 5. B-splines in variational atomic structure calculations -- 1. Introduction -- 2. The Hartree-Fock Approximation. , 3. Multiconfiguration Hartree-Fock Approximation -- 4. B-Spline Theory -- 5. B-Spline Methods for the Many-Electron Hartree-Fock Problem -- 6. B-Spline MCHF Equations -- 7. Conclusion -- 8. Acknowledgements -- 9. References -- Chapter 6. Electron-ion collisions: Fundamental processes in the focus of applied research -- 1. Introduction -- 2. Basics of Electron-Ion Collisions -- 3. Experimental Access to Data -- 4. Overview of Experimental Results on Free-Electron-Ion Collisions -- 5. Conclusions -- 6. Acknowledgements -- 7. References -- Chapter 7. Robust probabilistic quantum information processing with atoms, photons, and atomic ensembles -- 1. Introduction -- 2. Quantum Communication with Atomic Ensembles -- 3. Quantum State Engineering with Realistic Linear Optics -- 4. Quantum Computation through Probabilistic Atom-Photon Operations -- 5. Summary -- 6. Acknowledgements -- 7. References -- Index -- Contents of Volumes in this Serial.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Princeton :Princeton University Press,
    Keywords: Electronic books.
    Description / Table of Contents: No detailed description available for "Principles of Laser Spectroscopy and Quantum Optics".
    Type of Medium: Online Resource
    Pages: 1 online resource (538 pages)
    Edition: 1st ed.
    ISBN: 9781400837045
    DDC: 535.15
    Language: English
    Note: Cover -- Contents -- Preface -- 1 Preliminaries -- 1.1 Atoms and Fields -- 1.2 Important Parameters -- 1.3 Maxwell's Equations -- 1.4 Atom-Field Hamiltonian -- 1.5 Dirac Notation -- 1.6 Where Do We Go from Here? -- 1.7 Appendix: Atom-Field Hamiltonian -- Problems -- References -- Bibliography -- 2 Two-Level Quantum Systems -- 2.1 Review of Quantum Mechanics -- 2.1.1 Time-Independent Problems -- 2.1.2 Time-Dependent Problems -- 2.2 Interaction Representation -- 2.3 Two-Level Atom -- 2.4 Rotating-Wave or Resonance Approximation -- 2.4.1 Analytic Solutions -- 2.5 Field Interaction Representation -- 2.6 Semiclassical Dressed States -- 2.6.1 Adiabatic Following -- 2.7 General Remarks on Solution of the Matrix Equation y(t) = A(t)y(t) -- 2.7.1 Perturbation Theory -- 2.7.2 Adiabatic Approximation -- 2.7.3 Magnus Approximation -- 2.8 Summary -- 2.9 Appendix A: Representations -- 2.9.1 Relationships between the Representations -- 2.10 Appendix B: Spin Half Quantum System in a Magnetic Field -- 2.10.1 Analytic Solutions-Magnetic Case -- Problems -- References -- Bibliography -- 3 Density Matrix for a Single Atom -- 3.1 Density Matrix -- 3.2 Interaction Representation -- 3.3 Field Interaction Representation -- 3.4 Semiclassical Dressed States -- 3.5 Bloch Vector -- 3.5.1 No Relaxation -- 3.5.2 Relaxation Included -- 3.6 Summary -- 3.7 Appendix A: Density Matrix Equations in the Rotating-Wave Approximation -- 3.7.1 Schrödinger Representation -- 3.7.2 Interaction Representation -- 3.7.3 Field Interaction Representation -- 3.7.4 Bloch Vector -- 3.7.5 Semiclassical Dressed-State Representation -- 3.8 Appendix B: Collision Model -- Problems -- References -- Bibliography -- 4 Applications of the Density Matrix Formalism -- 4.1 Density Matrix for an Ensemble -- 4.2 Absorption Coefficient-Stationary Atoms -- 4.3 Simple Inclusion of Atomic Motion. , 4.4 Rate Equations -- 4.5 Summary -- Problems -- References -- Bibliography -- 5 Density Matrix Equations: Atomic Center-of-Mass Motion, Elementary Atom Optics, and Laser Cooling -- 5.1 Introduction -- 5.2 Atom in a Single Plane-Wave Field -- 5.3 Force on an Atom -- 5.3.1 Plane Wave -- 5.3.2 Focused Plane Wave: Atom Trapping -- 5.3.3 Standing-Wave Field: Laser Cooling -- 5.4 Summary -- 5.5 Appendix: Quantization of the Center-of-Mass Motion -- 5.5.1 Coordinate Representation -- 5.5.2 Momentum Representation -- 5.5.3 Sum and Difference Representation -- 5.5.4 Wigner Representation -- Problems -- References -- Bibliography -- 6 Maxwell-Bloch Equations -- 6.1 Wave Equation -- 6.1.1 Pulse Propagation in a Linear Medium -- 6.2 Maxwell-Bloch Equations -- 6.2.1 Slowly Varying Amplitude and Phase Approximation (SVAPA) -- 6.3 Linear Absorption and Dispersion-Stationary Atoms -- 6.4 Linear Pulse Propagation -- 6.5 Other Problems with the Maxwell-Bloch Equations -- 6.6 Summary -- 6.7 Appendix: Slowly Varying Amplitude and Phase Approximation-Part II -- Problems -- Bibliography -- 7 Two-Level Atoms in Two or More Fields: Introduction to Saturation Spectroscopy -- 7.1 Two-Level Atoms and N Fields-Third-Order Perturbation Theory -- 7.1.1 Zeroth Order -- 7.1.2 First Order -- 7.1.3 Second Order -- 7.1.4 Third Order -- 7.2 N = 2: Saturation Spectroscopy for Stationary Atoms -- 7.3 N = 2: Saturation Spectroscopy for Moving Atoms in Counterpropagating Fields-Hole Burning -- 7.3.1 Hole Burning and Atomic Population Gratings -- 7.3.2 Probe Field Absorption -- 7.4 Saturation Spectroscopy in Inhomogeneously Broadened Solids -- 7.5 Summary -- 7.6 Appendix A: Saturation Spectroscopy-Stationary Atoms in One Strong and One Weak Field -- 7.7 Appendix B: Four-Wave Mixing -- Problems -- References -- Bibliography. , 8 Three-Level Atoms: Applications to Nonlinear Spectroscopy-Open Quantum Systems -- 8.1 Hamiltonian for & -- #923 -- , V, and Cascade Systems -- 8.1.1 Cascade Configuration -- 8.1.2 V and & -- #923 -- Configurations -- 8.1.3 All Configurations -- 8.2 Density Matrix Equations in the Field Interaction Representation -- 8.3 Steady-State Solutions-Nonlinear Spectroscopy -- 8.3.1 Stationary Atoms -- 8.3.2 Moving Atoms: Doppler Limit -- 8.4 Autler-Townes Splitting -- 8.5 Two-Photon Spectroscopy -- 8.6 Open versus Closed Quantum Systems -- 8.7 Summary -- Problems -- References -- Bibliography -- 9 Three-Level & -- #923 -- Atoms: Dark States, Adiabatic Following, and Slow Light -- 9.1 Dark States -- 9.2 Adiabatic Following-Stimulated Raman Adiabatic Passage -- 9.3 Slow Light -- 9.4 Effective Two-State Problem for the & -- #923 -- Configuration -- 9.5 Summary -- 9.6 Appendix: Force on an Atom in the & -- #923 -- Configuration -- Problems -- References -- Bibliography -- 10 Coherent Transients -- 10.1 Coherent Transient Signals -- 10.2 Free Polarization Decay -- 10.2.1 Homogeneous Broadening -- 10.2.2 Inhomogeneous Broadening -- 10.3 Photon Echo -- 10.4 Stimulated Photon Echo -- 10.5 Optical Ramsey Fringes -- 10.6 Frequency Combs -- 10.7 Summary -- 10.8 Appendix A: Transfer Matrices in Coherent Transients -- 10.9 Appendix B: Optical Ramsey Fringes in Spatially Separated Fields -- Problems -- References -- Bibliography -- 11 Atom Optics and Atom Interferometry -- 11.1 Review of Kirchhoff-Fresnel Diffraction -- 11.1.1 Electromagnetic Diffraction -- 11.1.2 Quantum-Mechanical Diffraction -- 11.2 Atom Optics -- 11.2.1 Scattering by an Amplitude Grating -- 11.2.2 Scattering by Periodic Structures-Talbot Effect -- 11.2.3 Scattering by Phase Gratings-Atom Focusing -- 11.3 Atom Interferometry -- 11.3.1 Microfabricated Elements. , 11.3.2 Counterpropagating Optical Field Elements -- 11.4 Summary -- Problems -- References -- Bibliography -- 12 The Quantized, Free Radiation Field -- 12.1 Free-Field Quantization -- 12.2 Properties of the Vacuum Field -- 12.2.1 Single-Photon State -- 12.2.2 Single-Mode Number State -- 12.2.3 Quasiclassical or Coherent States -- 12.3 Quadrature Operators for the Field -- 12.3.1 Pure n State -- 12.3.2 Coherent State -- 12.4 Two-Photon Coherent States or Squeezed States -- 12.4.1 Calculation of U[sub(L)](z) -- 12.5 Phase Operator -- 12.6 Summary -- 12.7 Appendix: Field Quantization -- 12.7.1 Reciprocal Space -- 12.7.2 Longitudinal and Transverse Vector Fields -- 12.7.3 Transverse Electromagnetic Field -- 12.7.4 Free Field -- Problems -- References -- Bibliography -- 13 Coherence Properties of the Electric Field -- 13.1 Coherence: Some General Concepts -- 13.1.1 Time versus Ensemble Averages -- 13.1.2 Classical Fields -- 13.1.3 Quantized Fields -- 13.2 Classical Fields: Correlation Functions -- 13.2.1 First-Order Correlation Function -- 13.2.2 Young's Fringes -- 13.2.3 Intensity Correlations-Second-Order Correlation Function -- 13.2.4 Hanbury Brown and Twiss Experiment -- 13.3 Quantized Fields: Density Matrix for the Field and Photon Optics -- 13.3.1 Coherent State -- 13.3.2 Thermal State -- 13.3.3 P(α) Distribution -- 13.3.4 Correlation Functions for the Field -- 13.4 Summary -- Problems -- References -- Bibliography -- 14 Photon Counting and Interferometry -- 14.1 Photodetection -- 14.1.1 Photodetection of Classical Fields -- 14.1.2 Photodetection of Quantized Fields -- 14.2 Michelson Interferometer -- 14.2.1 Classical Fields -- 14.2.2 Quantized Fields -- 14.3 Summary -- Problems -- References -- Bibliography -- 15 Atom-Quantized Field Interactions -- 15.1 Interaction Hamiltonian and Equations of Motion -- 15.1.1 Schrödinger Representation. , 15.1.2 Heisenberg Representation -- 15.1.3 Hamiltonian -- 15.1.4 Jaynes-Cummings Model -- 15.2 Dressed States -- 15.3 Generation of Coherent and Squeezed States -- 15.3.1 Coherent States -- 15.3.2 Squeezed States -- 15.4 Summary -- Problems -- References -- Bibliography -- 16 Spontaneous Decay -- 16.1 Spontaneous Decay Rate -- 16.2 Radiation Pattern and Repopulation of the Ground State -- 16.2.1 Radiation Pattern -- 16.2.2 Repopulation of the Ground State -- 16.3 Summary -- 16.4 Appendix A: Circular Polarization -- 16.5 Appendix B: Radiation Pattern -- 16.5.1 Unpolarized Initial State -- 16.5.2 z-Polarized Excitation -- 16.5.3 Other than z-Polarized Excitation -- 16.6 Appendix C: Quantum Trajectory Approach to Spontaneous Decay -- Problems -- References -- Bibliography -- 17 Optical Pumping and Optical Lattices -- 17.1 Optical Pumping -- 17.1.1 Traveling-Wave Fields -- 17.1.2 z-Polarized Excitation -- 17.1.3 Irreducible Tensor Basis -- 17.1.4 Standing-Wave and Multiple-Frequency Fields -- 17.2 Optical Lattice Potentials -- 17.3 Summary -- 17.4 Appendix: Irreducible Tensor Formalism -- 17.4.1 Coupled Tensors -- 17.4.2 Density Matrix Equations -- Problems -- References -- Bibliography -- 18 Sub-Doppler Laser Cooling -- 18.1 Cooling via Field Momenta Exchange and Differential Scattering -- 18.1.1 Counterpropagating Fields -- 18.2 Sisyphus Picture of the Friction Force for a G = 1/2 Ground State and Crossed-Polarized Fields -- 18.3 Coherent Population Trapping -- 18.4 Summary -- 18.5 Appendix: Fokker-Planck Approach for Obtaining the Friction Force and Diffusion Coefficients -- 18.5.1 Fokker-Planck Equation -- 18.5.2 G = 1/2 -- lin& -- #8869 -- lin Polarization -- 18.5.3 G = 1 to H = 2 Transition -- & -- #963 -- [sub(+)] - & -- #963 -- [sub(-)] Polarization -- 18.5.4 Equilibrium Energy -- Problems -- References -- Bibliography. , 19 Operator Approach to Atom-Field Interactions: Source-Field Equation.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Atoms. ; Molecules. ; Physical optics. ; Nuclear physics. ; Electronic books.
    Description / Table of Contents: This volume continues the tradition of the Advances series. It contains contributions from experts in the field of atomic, molecular, and optical (AMO) physics. The articles contain some review material, but are intended to provide a comprehensive picture of recent important developments in AMO physics. Both theoretical and experimental articles are included in the volume. International experts Comprehensive articles New developments.
    Type of Medium: Online Resource
    Pages: 1 online resource (457 pages)
    Edition: 1st ed.
    ISBN: 9780080951010
    Series Statement: Issn Series ; v.Volume 57
    DDC: 539
    Language: English
    Note: Front Cover -- Advances in Atomic, Molecular, and Optical Physics -- Copyright Page -- Contents -- Contributors -- Preface -- Chapter 1: Driven Ratchets for Cold Atoms -- 1. Introduction -- 2. Ratchets: Generalities -- 2.1. The Flashing Ratchet -- 2.2. The Rocking Ratchet -- 3. Symmetry and Transport in AC-Driven Ratchets -- 3.1. General Considerations -- 3.2. The Periodically Driven Rocking Ratchet -- 3.3. The Quasiperiodically Driven Rocking Ratchet -- 3.4. The Gating Ratchet -- 4. Cold Atom Ratchets -- 4.1. Dissipative Optical Lattices -- 4.2. Rocking Ratchet for Cold Atoms -- 4.3. Rocking Ratchet with Biharmonic Driving -- 4.3.1. Dissipation-Induced Symmetry Breaking -- 4.3.2. Rectification of Fluctuations, Current Reversals, and Resonant Activation in a System with Broken Hamiltonian Symmetry -- 4.4. Multifrequency Driving and Route to Quasiperiodicity -- 4.5. Gating Ratchet -- 5. Outlook -- References -- Chapter 2: Quantum Effects in Optomechanical Systems -- 1. Introduction -- 2. Cavity Optomechanics via Radiation-Pressure -- 2.1. Langevin Equations Formalism -- 2.2. Stability Analysis -- 2.3. Covariance Matrix and Logarithmic Negativity -- 3. Ground State Cooling -- 3.1. Feedback Cooling -- 3.1.1. Phase-Quadrature Feedback -- 3.1.2. Generalized Quadrature Feedback -- 3.2. Back-Action Cooling -- 3.3. Readout of the Mechanical Resonator State -- 4. Entanglement Generation with a Single Driven Cavity Mode -- 4.1. Intracavity Optomechanical Entanglement -- 4.2. Entanglement with Output Modes -- 4.3. Optical Entanglement between Sidebands -- 5. Entanglement Generation with Two Driven Cavity Modes -- 5.1. Quantum-Langevin Equations and Stability Conditions -- 5.2. Entanglement of the Output Modes -- 5.2.1. Optomechanical Entanglement -- 5.2.2. Purely Optical Entanglement between Output Modes. , 6. Cavity-Mediated Atom-Mirror Stationary Entanglement -- 7. Conclusions -- Acknowledgments -- References -- Chapter 3: The Semiempirical Deutsch-Maumlrk Formalism: A Versatile Approach for the Calculation of Electron-Impact Ionization Cross Sections of Atoms, Molecules, Ions, and Clusters -- 1. Introduction -- 2. Theoretical Background -- 2.1. The DM Formalism -- 2.2. Other Approaches -- 3. Atoms -- 3.1. Ground-State Atoms -- 3.2. Atoms in Excited States -- 3.2.1. Metastable Rare Gas Atoms -- 3.2.2. He Metastable Ionization -- 3.2.3. Cd and Hg Metastable Ionization -- 4. Molecules, Molecular Radicals, and Clusters -- 4.1. Molecules -- 4.1.1. CF3X (X = H, Br, I) -- 4.1.2. SiCl4 and TiCl4 -- 4.2. Free Radicals and Other Unstable Species -- 4.2.1. CH3, CH2, CH -- 4.2.2. CFx and NFx (x = 1-3) -- 4.3. Biomolecules -- 4.3.1. Uracil -- 4.3.2. DNA Bases -- 4.4. Clusters -- 4.4.1. C60 -- 4.4.2. C60 and C70 -- 5. Ions -- 5.1. Atomic Ions -- 5.1.1. Positive Atomic Ions -- 5.1.2. Negative Atomic Ions (Detachment) -- 5.1.2.1. O- and L- -- 5.2. Molecular Ions -- 5.2.1. Positive Molecular Ions -- 5.2.1.1. C2H2+ -- 5.2.1.2. CO+ and CD+ -- 5.2.2. Negative Molecular Ions (Detachment) -- 5.2.2.1. B2-, BO-, and CN- -- 6. Conclusions and Outlook -- Acknowledgments -- References -- Chapter 4: Physics and Technology of Polarized Electron Scattering from Atoms and Molecules -- 1. Introduction -- 2. Spin-dependent Interactions -- 2.1. Electron Exchange -- 2.2. Spin-Orbit Interactions -- 2.3. Combinations of Spin-Orbit and Exchange Effects -- 2.4. Relevant Scattering Amplitudes: Characterization of Excited States and the Scattered Electron -- 2.5. Theory, Archiving, and Formalism -- 3. Atomic Targets -- 3.1. Exchange Scattering -- 3.1.1. (e,e) and (e,2e) Processes -- 3.1.2. (e,gammae) and (e,gamma2e) Processes -- 3.2. Mott Scattering -- 3.2.1. (e,e) Processes. , 3.2.2. (e,egamma) and (e,2e) Processes -- 3.3. Combinations of Spin-Orbit Coupling and Exchange Effects -- 3.3.1. The Fine-Structure Effect and its Variants -- 3.3.1.1. (e,2e) Experiments -- 3.3.1.2. (e,egamma) Experiments -- 3.3.2. Combinations of Exchange with Mott Scattering -- 3.3.2.1. (e,e) and (e,2e) Experiments -- 3.3.2.2. (e,egamma) Experiments -- 3.3.3. Resonant Effects -- 4. Molecular Targets -- 4.1. Simple Diatomic Molecules -- 4.1.1. The Exchange Interaction in Elastic Scattering -- 4.1.2. Exchange Effects in Inelastic Scattering -- 4.2. Chiral Molecular Targets -- 5. Developments in Polarized Electron Technology -- 5.1. Sources of Polarized Electrons -- 5.1.1. Photemission from GaAs and its Variants -- 5.1.2. Sources Based on Chemi-Ionization of He* -- 5.1.3. Novel Sources of Polarized Electrons -- 5.1.3.1. Field emission tips Field -- 5.1.3.2. Sources involving multiphoton processes -- 5.1.3.3. Spin filters -- 5.2. Polarimetry -- 5.2.1. Mott Polarimetry -- 5.2.2. Optical Polarimetry -- Acknowledgments -- References -- Chapter 5: Multidimensional Electronic and Vibrational Spectroscopy: An Ultrafast Probe of Molecular Relaxation and Reaction Dynamics -- 1. Introduction, Background, and Analogies -- 1.1. Timescales and Orders of Magnitude -- 1.2. The AMO Perspective: Photon Echoes, Ramsey Fringes, and NMR -- 1.3. Diagrammatic Representation of Dynamical Evolution -- 1.3.1 Causality and the Absorptive Lineshape -- 1.4. Molecular Perspective -- 1.4.1 Coupling -- 1.4.2 Line Broadening -- 1.4.3 Orientation -- 1.4.4 Coherence -- 1.4.5 Spectral Diffusion -- 1.4.6 Chemical Exchange -- 1.4.7 Energy Transfer -- 2. Two-dimensional Electronic Spectroscopy -- 2.1. Idiosyncrasies and Technical Challenges of Multidimensional Electronic Spectroscopy -- 2.2. Experimental Implementations -- 2.2.1 Diffractive Optics -- 2.2.2 The Pump-Probe Geometry. , 2.3. Examples of 2D Electronic Spectroscopy Experiments -- 2.3.1 Energy Transfer in Light-Harvesting Systems -- 2.3.2 Vibrational Wavepacket Dynamics in 2DES -- 2.3.3 Understanding 2DES Spectra -- 3. Two-dimensional Vibrational Spectroscopy -- 3.1. Idiosyncrasies of Multidimensional IR Spectroscopy -- 3.2. Experimental Implementation -- 3.3. Examples of Equilibrium 2DIR Spectroscopy -- 3.3.1 The OH Stretch in Water -- 3.3.2 Vibrational Coherence -- 4. Future Directions -- Acknowledgments -- Appendix: Derivation of the T2-Dependent Coherence -- References -- Chapter 6: Fundamentals and Applications of Spatial Dissipative Solitons in Photonic Devices -- 1. Introduction -- 1.1. Basic Definitions and Scope -- 1.2. Phenomenology of Optical Spatial Dissipative Solitons (SDS) -- 1.3. Basic Equations -- 1.4. Bistability and Multistability of SDS -- 2. Existence, Bifurcation Structure, and Dynamics of Single and Multiple SDS -- 2.1. Patterns, Dissipative Solitons, and Homoclinic Snaking -- 2.2. Homoclinic Snaking -- 2.3. Basic Properties and Dynamics of SDS -- 2.4. Snaking in Other Optical Models -- 2.5. "Tilted" Snaking due to Nonlocal Coupling -- 3. Cavity Soliton Lasers -- 3.1. Attractive Features of a Cavity Soliton Laser and Bistable Laser Schemes -- 3.2. Cavity Solitons in Lasers with Optical Injection -- 3.3. Cavity Solitons Based on Frequency-Selective Feedback -- 3.3.1 Scheme and Mechanism of Bistability -- 3.3.2 Experimental Investigations in VCSELs -- 3.3.3 Theoretical Treatment -- 3.4. Laser Cavity Solitons due to Saturable Absorption -- 3.4.1 General Theory and Early Experiments -- 3.4.2 Modeling and Design of Semiconductor-Based Devices -- 3.4.3 Experimental Realization Using Face-to-Face VCSELs -- 4. Spatial Dissipative Solitons due to Spatially Periodic Modulations -- 4.1. Spatial Dissipative Solitons due to Intracavity Photonic Crystals. , 4.2. Discrete Spatial Dissipative Solitons -- 5. Phase Fronts and Locked Spots -- 6. Applications of Spatial Dissipative Solitons -- 6.1. Positioning of SDS and All-Optical Memories -- 6.2. Exploring the Mobility of SDS -- 6.3. All-Optical Delay Line -- 6.4. Delay Lines in a CSL and Spontaneous Motion of LCS -- 6.5. Soliton Force Microscopy -- 7. Conclusions -- Acknowledgments -- References -- Index -- Contents of Volumes in this Serial.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Nuclear physics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (305 pages)
    Edition: 1st ed.
    ISBN: 9780123810229
    Series Statement: Issn Series
    DDC: 539
    Language: English
    Note: Intro -- Advances in Atomic, Molecular, and Optical Physics -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1. Casimir Effects in Atomic, Molecular, and Optical Physics -- 1. Introduction -- 2. What's a Micro Effect -- What's a Macro Effect? -- 3. Relativistic Terms -- 4. Yet Another Repulsive Interaction -- 5. Nonrelativistic Molecules and Dressed Atoms -- 6. Not a Trivial Number -- 7. Reconciling Multipoles -- 8. Conclusion -- Acknowledgments -- References -- Chapter 2. Advances in Coherent Population Trapping for Atomic Clocks -- 1. Coherent Population Trapping -- 2. Atomic Clocks -- 3. Advanced CPT Techniques -- 4. Additional Considerations -- 5. Conclusions and Outlook -- Acknowledgments -- References -- Chapter 3. Dissociative Recombination of H3þ Ions with Electrons:Theory and Experiment -- 1. Introduction -- 2. Basic Definitions -- 3. Experimental Techniques -- 4. Theory -- 5. History of Experimental H3+ Recombination Studies -- 6. Reconciling Afterglow and Storage Ring Results -- 7. Comparison of Storage Ring Data -- 8. H3+ Product Branching -- 9. Isotope Effects -- 10. Conclusions -- Acknowledgments -- References -- Chapter 4. Permanent Electric Dipole Moments of Atoms and Molecules -- 1. Introduction -- 2. Historical Perspectives -- 3. Contemporary Theoretical Motivations-The Standard Model and Beyond -- 4. EDM Measurements -- 5. Contemporary Experiments -- 6. Conclusion -- Acknowledgments -- References -- Chapter 5. Spontaneous Decay, Unitarity, and the Weisskopf-Wigner Approximation -- 1. Introduction -- 2. Excited State Time Evolution -- 3. Spectrum and Unitarity -- 4. Discussion -- Acknowledgments -- References -- Chapter 6. Ultrafast Nonlinear Optical Signals Viewed from the Molecule's Perspective: Kramers-Heisenberg Transition-Amplitudes versus Susceptibilities -- 1. Introduction. , 2. Quantum-Field Description of Heterodyne Signals -- 3. Transition-Amplitudes and the Optical Theorem for Time-Domain Measurements -- 4. CTPL Representation of Optical Signals -- 5. The Pump-Probe Signal -- 6. The Pump-Probe Signal Revisited: Transition Amplitudes -- 7. Coherent Anti-Stokes Raman Spectroscopy -- 8. Cars Signals Recast in Terms of Transition Amplitudes -- 9. Cars Resonances Can be Viewed as a Double-Slit Interference of Two-Photon Pathways -- 10. Purely-Dissipative Spectroscopic Signals -- 11. Summary -- Acknowledgments -- References -- Index -- Contents of Volumes in th is Serial.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...