GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1748-7692
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 13460, doi:10.1038/s41598-017-13359-3.
    Description: Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.
    Description: This research was funded and supported by many organizations, specified by projects as follows: Data recordings from region 1 were provided by K. Stafford and this research effort was funded by the National Science Foundation #NSF-ARC 0532611. Region 2 data were provided by D. K. Mellinger and S. Nieukirk, funded by National Oceanic and Atmospheric Agency (NOAA) and the Office of Naval Research (ONR) #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244-08-1-0029, N00244-09-1-0079, and N00244-10-1-0047.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © Inter-Research, 2013. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 490 (2013): 267-284, doi:10.3354/meps10457.
    Description: Due to the seriously endangered status of North Pacific right whales Eubalaena japonica, an improved understanding of the environmental factors that influence the species’ distribution and occurrence is needed to better assess the effects of climate change and industrial activities on the population. Associations among right whales, zooplankton, and the physical environment were examined in the southeastern Bering Sea during the summers of 2008 and 2009. Sampling with nets, an optical plankton counter, and a video plankton recorder in proximity to whales as well as along cross-isobath surveys indicated that the copepod Calanus marshallae is the primary prey of right whales in this region. Acoustic detections of right whales from sonobuoys deployed during the cross-isobath surveys were strongly associated with C. marshallae abundance, and peak abundance estimates of C. marshallae in 2.5 m depth strata near a tagged right whale ranged as high as 106 copepods m-3. The smaller Pseudocalanus spp. was higher in abundance than C. marshallae in proximity to right whales, but significantly lower in biomass. High concentrations of C. marshallae occurred in both the surface and bottom layers of the highly stratified water column, but there was no evidence of diel vertical migration. Instead, occurrence of C. marshallae in the bottom layer was associated with elevated near-bottom light attenuance and chlorophyll fluorescence, suggesting C. marshallae may aggregate at depth while feeding on resuspended phytodetritus. Despite the occasional presence of strong horizontal gradients in hydrographic properties, no association was found between C. marshallae and either fronts or phytoplankton distribution.
    Description: This study was funded by the US Depart - ment of the Interior, Minerals Management Service (MMS; now Bureau of Ocean Energy Management), through Interagency Agreement No. M07RG13267 (AKC 063) with the US Department of Commerce, National Oceanic and Atmospheric Administration (NOAA), as part of the MMS Alaska Environmental Studies Program.
    Keywords: Eubalaena japonica ; Right whale ; Calanus marshallae ; Calanus glacialis ; Bering Sea ; Baleen whale ; Resuspension ; Phytodetritus
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-08-31
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Danielson, S. L., Grebmeier, J. M., Iken, K., Berchok, C., Britt, L., Dunton, K. H., Eisner, L., V. Farley, E., Fujiwara, A., Hauser, D. D. W., Itoh, M., Kikuchi, T., Kotwicki, S., Kuletz, K. J., Mordy, C. W., Nishino, S., Peralta-Ferriz, C., Pickart, R. S., Stabeno, P. S., Stafford. K. M., Whiting, A. V., & Woodgate, R. Monitoring Alaskan Arctic shelf ecosystems through collaborative observation networks. Oceanography, 35(2), (2022): 52, https://doi.org/10.5670/oceanog.2022.119.
    Description: Ongoing scientific programs that monitor marine environmental and ecological systems and changes comprise an informal but collaborative, information-rich, and spatially extensive network for the Alaskan Arctic continental shelves. Such programs reflect contributions and priorities of regional, national, and international funding agencies, as well as private donors and communities. These science programs are operated by a variety of local, regional, state, and national agencies, and academic, Tribal, for-profit, and nongovernmental nonprofit entities. Efforts include research ship and autonomous vehicle surveys, year-long mooring deployments, and observations from coastal communities. Inter-program coordination allows cost-effective leveraging of field logistics and collected data into value-added information that fosters new insights unattainable by any single program operating alone. Coordination occurs at many levels, from discussions at marine mammal co-management meetings and interagency meetings to scientific symposia and data workshops. Together, the efforts represented by this collection of loosely linked long-term monitoring programs enable a biologically focused scientific foundation for understanding ecosystem responses to warming water temperatures and declining Arctic sea ice. Here, we introduce a variety of currently active monitoring efforts in the Alaskan Arctic marine realm that exemplify the above attributes.
    Description: Funding sources include the following: ALTIMA: BOEM M09PG00016, M12PG00021, and M13PG00026; AMBON: NOPP-NA14NOS0120158 and NOPP-NA19NOS0120198; Bering Strait moorings: NSF-OPP-AON-PLR-1758565, NSF-OPP-PLR-1107106; BLE-LTER: NSF-OPP-1656026; CEO: NPRB-L36, ONR N000141712274 and N000142012413; DBO: NSF-AON-1917469 and NOAA-ARP CINAR-22309.07; HFR, AOOS Arctic glider, and Passive Acoustics at CEO and Bering Strait: NA16NOS0120027; WABC: NSF-OPP-1733564. JAMSTEC: partial support by ArCS Project JPMXD1300000000 and ArCS II Project JPMXD1420318865; Seabird surveys: BOEM M17PG00017, M17PG00039, and M10PG00050, and NPRB grants 637, B64, and B67. This publication was partially funded by the Cooperative Institute for Climate, Ocean, & Ecosystem Studies (CICOES) under NOAA Cooperative Agreement NA20OAR4320271, and represents contribution 2021-1163 to CICOES, EcoFOCI-1026, and 5315 to PMEL. This is NPRB publication ArcticIERP-43.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schall, E., Di Iorio, L., Berchok, C., Filun, D., Bedrinana-Romano, L., Buchan, S. J., Van Opzeeland, I., Sears, R., & Hucke-Gaete, R. Visual and passive acoustic observations of blue whale trios from two distinct populations. Marine Mammal Science, (2019): 1-10, doi:10.1111/mms.12643.
    Description: Blue whale populations from both hemispheres are thought to undertake annual migrations between high latitude feeding grounds and low latitude breeding grounds (Mackintosh, 1966). For individuals of some populations these predetermined movements to and from wintering areas where calving occurs have been confirmed through photo‐identification, satellite‐tracking, and passive acoustic monitoring (Burtenshaw et al., 2004; Mate, Lagerquist, & Calambokidis, 1999; Sears & Perrin, 2002; Stafford, Nieukirk, & Fox, 1999a). However, for many blue whale populations no clear migratory behavior has been reported and locations of respective breeding grounds remain unclear (e.g., Hucke‐Gaete, Osman, Moreno, Findlay, & Ljungblad, 2004; Samaran et al., 2013; Stafford, Chapp, Bohnenstiel, & Tolstoy, 2011; Thomisch et al., 2016). On feeding grounds in the Gulf of St. Lawrence and along the coast of California, blue whales have been observed to form female–male pairs during summer, which can remain stable up to over several weeks, with the number of pairs increasing towards the end of summer (Sears & Perrin, 2002; Calambokidis, unpublished data;1 RS, unpublished data). These pairs are sometimes joined by a second male, forming a blue whale trio, which often is observed to engage in surface active behaviors lasting several minutes (Sears & Perrin, 2002; RS, unpublished data). The formation of blue whale trios is probably related to reproductive competition between male escorts and female choice (RS, unpublished data). Blue whale males produce population‐specific songs likely functioning as reproductive advertisement (Edds‐Walton, 1997; Oleson et al. 2007a; Stafford, Fox, & Clark, 1998). Several studies have reported song year‐round in low‐, mid‐, and high‐latitude waters, frequently with high song production rates during summer on the feeding grounds (e.g., Barlow et al., 2018; Buchan, Stafford, & Hucke‐Gaete, 2015; Samaran, Adam, & Guinett, 2010; Širović et al., 2004; Stafford, Nieukirk, & Fox, 1999b; Thomisch et al., 2016). Therefore, breeding activities in blue whales may be more opportunistic, i.e., not restricted to the breeding season or to a specific habitat.
    Description: ES thanks Prof. Dr. Per J. Palsbøll for the supervision of the initial Master research project, the Marco Polo fund, and the University Groningen for covering travel expenses. We thank the Melimoyu Ecosystem Research Institute, SNP Patagonia Sur, and the company Teledyne Reson for partially funding the acoustic data collection in southern Chile. RHG is thankful to WWF‐Germany/Chile for partially funding fieldwork through grants to Centro Ballena Azul. CLB thanks the team of the Mingan Island Cetacean Study for their logistical support of boats and lodging, access to the North Atlantic blue whale database, and field assistance; Yvon Bélanger for opening his home to her and RS's field crews; for financial support from the National Science Foundation (Graduate Fellowship), National Defense Industrial Association, American Museum of Natural History (Lerner Gray Fund for Marine Research Grant), Penn State Applied Research Laboratory, and private donors Jeff and Lynn Kraus; and graduate advisors at Penn State University David L. Bradley, Thomas B. Gabrielson, and Diana McCammon. LDI thanks the Croisières du Grand Héron and Center Mériscope for allowing and supporting fieldwork, the Animal Behavior Department of the University of Zurich (Switzerland), the Bioacoustics Research Program at Cornell University (USA) and Prof. M. Manser and C. W. Clark for supervising LDI's Ph.D. The work was supported by grants to LDI for her PhD from the Forschungskommission der Universität Zürich, Züricher Tierschutz, Basler Stiftung für Biologische Forschung, SCNAT, Zangger‐Weber‐Stiftung, SSVA. SJB thanks the Center for Oceanographic Research COPAS Sur‐Austral, CONICYT PIA PFB31, the Office of Naval Research Global (awards N62909‐16‐2214 and N00014‐17‐2606), and a grant to the Centro de Estudios Avanzados en Zonas Áridas from Programa Regional CONICYT R16A10003 for support during manuscript writing. We would like to thank the field crews (F. Viddi, J. Ruiz, A. Carpentier, M. Lessard, A. Liebschner, C. Ramp, S. Angel, K. Aucrenaz, T. Doniol‐Valcroze, J. LeBreus, B. Kot, and J. Puschock) for their immense commitment to blue whale research.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davis, G. E., Baumgartner, M. F., Corkeron, P. J., Bell, J., Berchok, C., Bonnell, J. M., Thornton, J. B., Brault, S., Buchanan, G. A., Cholewiak, D. M., Clark, C. W., Delarue, J., Hatch, L. T., Klinck, H., Kraus, S. D., Martin, B., Mellinger, D. K., Moors-Murphy, H., Nieukirk, S., Nowacek, D. P., Parks, S. E., Parry, D., Pegg, N., Read, A. J., Rice, A. N., Risch, D., Scott, A., Soldevilla, M. S., Stafford, K. M., Stanistreet, J. E., Summers, E., Todd, S., & Van Parijs, S. M. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Global Change Biology, (2020): 1-30, doi:10.1111/gcb.15191.
    Description: Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata ) and North Atlantic right whales (NARW; Eubalaena glacialis ). This study assesses the acoustic presence of humpback (Megaptera novaeangliae ), sei (B. borealis ), fin (B. physalus ), and blue whales (B. musculus ) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.
    Description: We thank Chris Pelkie, David Wiley, Michael Thompson, Chris Tessaglia‐Hymes, Eric Matzen, Chris Tremblay, Lance Garrison, Anurag Kumar, John Hildebrand, Lynne Hodge, Russell Charif, Kathleen Dudzinski, and Ann Warde for help with project planning, field work support, and data management. For all the support and advice, thanks to the NEFSC Protected Species Branch, especially the passive acoustics group, Josh Hatch, and Leah Crowe. We thank the field and crew teams on all the ships that helped in the numerous deployments and recoveries. This research was funded and supported by many organizations, specified by projects as follows: data recordings from region 1 were provided by K. Stafford (funding: National Science Foundation #NSF‐ARC 0532611). Region 2 data: D. K. Mellinger and S. Nieukirk, National Oceanic and Atmospheric Administration (NOAA) PMEL contribution #5055 (funding: NOAA and the Office of Naval Research #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244‐08‐1‐0029, N00244‐09‐1‐0079, and N00244‐10‐1‐0047). Region 3A data: D. Risch (funding: NOAA and Navy N45 programs). Region 3 data: H. Moors‐Murphy and Fisheries and Oceans Canada (2005–2014 data), and the Whitehead Lab of Dalhousie University (eastern Scotian Shelf data; logistical support by A. Cogswell, J. Bartholette, A. Hartling, and vessel CCGS Hudson crew). Emerald Basin and Roseway Basin Guardbuoy data, deployment, and funding: Akoostix Inc. Region 3 Emerald Bank and Roseway Basin 2004 data: D. K. Mellinger and S. Nieukirk, NOAA PMEL contribution #5055 (funding: NOAA). Region 4 data: S. Parks (funding: NOAA and Cornell University) and E. Summers, S. Todd, J. Bort Thornton, A. N. Rice, and C. W. Clark (funding: Maine Department of Marine Resources, NOAA #NA09NMF4520418, and #NA10NMF4520291). Region 5 data: S. M. Van Parijs, D. Cholewiak, L. Hatch, C. W. Clark, D. Risch, and D. Wiley (funding: National Oceanic Partnership Program (NOPP), NOAA, and Navy N45). Region 6 data: S. M. Van Parijs and D. Cholewiak (funding: Navy N45 and Bureau of Ocean and Energy Management (BOEM) Atlantic Marine Assessment Program for Protected Species [AMAPPS] program). Region 7 data: A. N. Rice, H. Klinck, A. Warde, B. Martin, J. Delarue, and S. Kraus (funding: New York State Department of Environmental Conservation, Massachusetts Clean Energy Center, and BOEM). Region 8 data: G. Buchanan, and K. Dudzinski (funding: New Jersey Department of Environmental Protection and the New Jersey Clean Energy Fund) and A. N. Rice, C. W. Clark, and H. Klinck (funding: Center for Conservation Bioacoustics at Cornell University and BOEM). Region 9 data: J. E. Stanistreet, J. Bell, D. P. Nowacek, A. J. Read, and S. M. Van Parijs (funding: NOAA and US Fleet Forces Command). Region 10 data: L. Garrison, M. Soldevilla, C. W. Clark, R. A. Chariff, A. N. Rice, H. Klinck, J. Bell, D. P. Nowacek, A. J. Read, J. Hildebrand, A. Kumar, L. Hodge, and J. E. Stanistreet (funding: US Fleet Forces Command, BOEM, NOAA, and NOPP). Region 11 data: C. Berchok as part of a collaborative project led by the Fundacion Dominicana de Estudios Marinos, Inc. (Dr. Idelisa Bonnelly de Calventi; funding: The Nature Conservancy [Elianny Dominguez]) and D. Risch (funding: World Wildlife Fund, NOAA, and Dutch Ministry of Economic Affairs).
    Keywords: baleen whales ; changes in distribution ; conservation ; North Atlantic Ocean ; passive acoustic monitoring ; seasonal occurrence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...