GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Pulvinar ; Superior colliculus ; Visual search ; Monkey ; Tachistoscopic discrimination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In order to investigate whether pulvinar lesions produce behavioral impairments similar to those that follow superior colliculus lesions, monkeys were tested on a visual search task before and after receiving radiofrequency lesions of either the superior colliculus or pulvinar. The animals searched for a small target pattern within an array of varying numbers of irrelevant patterns. After receiving colliculus lesions, the animals showed marked postoperative increases in either search time, percent errors, or both. By contrast, pulvinar lesions had little or no effect on visual search performance. Similarly, in learning to search for a target they had not previously seen, animals with colliculus lesions were impaired relative to unoperated controls, whereas pulvinar-lesioned animals did not differ from controls. In an attempt to confirm the finding that pulvinar lesions impair tachistoscopic pattern discrimination, we determined exposure-duration thresholds of pulvinar- and colliculus-lesioned monkeys for performance of a pattern discrimination. The thresholds of the colliculus-lesioned monkeys were elevated 20-fold relative to controls. By contrast, thresholds of the pulvinar-lesioned monkeys were normal. We conclude that the pulvinar is not critical for the attentional processes in which the superior colliculus participates.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 48 (1982), S. 449-454 
    ISSN: 1432-1106
    Keywords: Monkeys ; Visual localization ; Pulvinar lesions ; Superior colliculus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Since the pulvinar receives a major ascending projection of the superior colliculus, pulvinar lesions might produce behavioral impairments resembling those that follow colliculus lesions. To test this possibility, we examined the effect of pulvinar lesions in monkeys on the localization and detection of brief light flashes, a task in which monkeys with colliculus lesions are severely impaired. Some of the pulvinar-lesioned monkeys showed localization impairments similar to those in monkeys with colliculus lesions. However, histological analyses of the lesions suggested that these deficits were related not to the pulvinar damage per se, but rather to interruption of corticotectal fibers that pass through the pulvinar. We conclude that the pulvinar is not critical for the ability to locate and detect brief visual stimuli.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 79 (1990), S. 467-478 
    ISSN: 1432-1106
    Keywords: Superior colliculus ; Visual system ; Thalamus ; Oculomotor ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Behavioral and anatomical experiments have suggested that the pulvinar might play a role in the generation of saccadic eye movements to visual targets. To test this idea, we trained monkeys to make visually-guided saccades by requiring them to detect the dimming of a small target. We used three different saccade paradigms. On single-step trials, saccades were made from a central fixation point (FP) to a target at 12, 24 or 36° to the left or right. On overlap trials, the FP remained lit during presentation of a target at 12 or 24°. On double-step trials, the target stepped first to 24°, and then back to 12° on the same side. Animals were trained to criterion, received kainic acid lesions of the pulvinar, and were retested on all three tasks. The lesions were very large, destroying almost all of the visually responsive pulvinar. They also encroached on the lateral geniculate nucleus, thereby producing small foveal scotomas, and this resulted in some behavioral changes, including difficulty in maintaining fixation on the target and in detecting its dimming. Results on the saccade tests suggest that the pulvinar is not crucial for initiation of saccadic eye movements. Saccade latency and amplitude were unimpaired on both single-step and overlap trials. Saccadic performance was also normal on double-step trials. In a second experiment, we measured the average length of fixations during spontaneous viewing of a complex visual scene. Fixation lengths did not differ from those of unoperated control monkeys. We suggest that the neglect, increased saccadic latencies, and prolonged fixations attributed to pulvinar damage in previous studies were probably the result instead of inadvertent damage to tectal afferents. The present results, together with single unit data, point to a role for the pulvinar not in the generation of saccades, but rather in the integration of saccadic eye movements with visual processing.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 86 (1991), S. 467-470 
    ISSN: 1432-1106
    Keywords: Retrograde fluorescent tracers ; Subcortical vision ; Midbrain ; Nucleus isthmi ; Tectum ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We examined the distribution of labeled neurons in the parabigeminal nucleus of the monkey following injections of retrograde fluorescent tracers into the superior colliculus. The extent of the visual field representation included in the injection site was assessed from the location of labeled cells in striate cortex. The results suggest a rough topographic organization of the parabigeminal nucleus, with the lower quadrant represented anteriorly and the upper quadrant posteriorly. We also found bilateral projections from the parabigeminal nucleus to both superior colliculi, but the crossed projection appeared to terminate only in that part of the colliculus where the vertical meridian is represented. Parabigeminal cells with a crossed projection were larger than those projecting to the ipsilateral colliculus. The results suggest that the organization of the monkey's parabigemino-tectal system is fundamentally similar to that of many other vertebrates.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 92 (1992), S. 246-258 
    ISSN: 1432-1106
    Keywords: Vision ; Pulvinar ; Kainic acid ; Center ; Surround interactions ; Macaque
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Many cells in the superficial layers of the monkey superior colliculus are sensitive to the relative motion between a small target moving through the classic receptive field and a textured, moving background pattern that fills the visual field beyond the classic receptive field. The cells respond well when motion of the target differs from that of the background, but their responses are suppressed when the target moves in phase with the background. To determine whether this relative motion sensitivity depends on input to the colliculus from visual cortex, we studied colliculus cells in immobilized, anesthetized monkeys after unilateral thermocoagulation, or anesthetic blockade, of the corticotectal tract at the level of the pulvinar. In the colliculus ipsilateral to the corticotectal tract lesions, relative motion sensitivity was significantly reduced when compared either with the colliculus in intact animals or with the colliculus contralateral to the lesion. However, a moving-background stimulus still had a modest suppressive effect compared with a stationary background (“background motion sensitivity”), as is the case for intact animals. Anesthetic blockade of the corticotectal tract had similar effects; relative motion sensitivity, but not background motion sensitivity, was lost following injection of mepivacaine or bupivacaine. Pulvinar cell loss alone, induced by kainic acid injection, had no effect on relative motion sensitivity in the colliculus. The corticotectal tract lesions, but not the anesthetic injections, also had minor effects on flash-evoked responses and spontaneous discharge rates; these effects may reflect a retrograde response of some tectopulvinar cells to injury of their axons by the corticotectal tract lesions. In the colliculus opposite the corticotectal tract lesion, relative motion sensitivity was similar to that in normal animals. However, responses in the presence of a moving background were enhanced, suggesting that removal of cortical input to one colliculus may disinhibit the contralateral colliculus, a phenomenon reminiscent of the Sprague effect in the cat. We conclude that while cortical input to the colliculus may contribute little to the classic receptive field properties of superficial-layer cells, it clearly does contribute to relative motion sensitivity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 117 (1997), S. 43-58 
    ISSN: 1432-1106
    Keywords: Key words Vision ; Kainic acid ; Center-surround interactions ; Pulvinar ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Many cells in the superficial layers of the monkey superior colliculus are sensitive to relative motion. The response to a small stimulus moving through a cell’s receptive field is strongly modulated by the relative motion between the stimulus and a textured pattern moving through the surrounding visual field; modulation is independent of absolute direction and speed of the stimulus. To determine whether cortical visual area MT is essential for this type of relative-motion sensitivity, colliculus cells were studied in the anesthetized, immobilized preparation after ablation of area MT. Unilateral MT lesions were made by either aspiration, kainic acid injection, or a combination of both methods. Data from the lesioned animals were compared with those from intact animals. Ipsilateral to the lesions, colliculus cells showed an almost total loss of sensitivity to relative motion. This loss was related neither to inadvertent injury of cortical areas neighboring MT nor to incidental optic radiation damage. Two other forms of motion-dependent, center-surround interactions were still present in the colliculus after the cortical lesions. These were a rudimentary sensitivity to differential motion between stimulus and background, which occurs for only one direction of stimulus movement, and a nonselective center-surround suppression, which is induced by movement of a background stimulus in any direction. Visual responsiveness, ocular dominance, and flash-evoked responses were also unaffected by the cortical lesions. We conclude that input from area MT is crucial for relative-motion sensitivity, but not for other response properties, in the superficial layers of the monkey colliculus.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...