GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2023-02-26
    Keywords: Calculated; Calothrix, abundance expressed in number of nifH gene copies; Calothrix, associated species; Calothrix, biological trait, ratio expressed in mass of carbon per amount of nifH gene copies; China Sea; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Diazotrophs, total biomass as carbon; Event label; FLU; Fluorescence-based quantitative real-time PCR (qPCR); Fluorometer; Heterocyst, biomass; Latitude of event; Longitude of event; MAREDAT_Diazotrophs_Collection; Richelia, abundance expressed in number of nifH gene copies; Richelia, associated species; Richelia, biological trait, ratio expressed in mass of carbon per amount of nifH gene copies; SO187/2; SO187/2_07-1; SO187/2_11-1; SO187/2_12-1; SO187/2_13-1; SO187/2_15-1; SO187/2_17-1; SO187/2_20-2; SO187/2_21-1; SO187/2_21-1a; SO187/2_29-14a; SO187/2_29-35; SO187/2_29-9; SO187/2_32-1; SO187/2_33-1; SO187/2_37-1a; SO187/2_39-1; SO187/2_44-1; SO187/2_45-1-1a; SO187/2_45-4; SO187/2_46-1; SO187/2_48-1; SO187/2_53-1a; SO187/2_54-2; Sonne; Trichodesmium, abundance expressed in number of nifH gene copies; Trichodesmium, biomass as carbon; Trichodesmium abundance, total; Unicellular cyanobacteria, biomass; Unicellular cyanobacteria-A, abundance expressed in number of nifH gene copies; Unicellular cyanobacteria-A, biological trait, ratio expressed in mass of carbon per amount of nifH gene copies; Unicellular cyanobacteria-B, abundance expressed in number of nifH gene copies; Unicellular cyanobacteria-B, biological trait, ratio expressed in mass of carbon per amount of nifH gene copies; VIETNAM
    Type: Dataset
    Format: text/tab-separated-values, 637 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-27
    Keywords: Calculated after Luo et al. (2012); Chlorophyll a; Comment; CTD, Sea-Bird SBE 911plus; Date/Time of event; DEPTH, water; Determination of phosphate (Murphy & Riley, 1962); Diazotrophs, total biomass as carbon; Event label; Fluorescence-based quantitative real-time PCR (qPCR); Heterocyst, biomass; Latitude of event; Longitude of event; MAREDAT_Diazotrophs_Collection; Nitrate; Phosphate; Richelia, abundance expressed in number of nifH gene copies; Richelia, associated species; Richelia, biological trait, ratio expressed in mass of carbon per amount of nifH gene copies; Salinity; Seawater analysis (Strickland & Parsons, 1968); South Pacific Ocean; SPO2003-03-15; SPO2003-03-16; SPO2003-03-17; SPO2003-03-18; SPO2003-03-19; SPO2003-03-20; SPO2003-03-21; SPO2003-03-22-1; SPO2003-03-22-2; SPO2003-03-24; SPO2003-03-25; SPO2003-03-28; SPO2003-03-29; SPO2003-03-30; SPO2003-03-31; SPO2003-04-02; SPO2003-04-03; SPO2003-04-05; SPO2003-04-06; SPO2003-04-07; SPO2003-04-08; SPO2003-04-09; SPO2003-04-10; SPO2003-04-12; SPO2003-04-13; Temperature, water; Trichodesmium, abundance expressed in number of nifH gene copies; Trichodesmium, biomass as carbon; Trichodesmium abundance, total; Unicellular cyanobacteria, biomass; Unicellular cyanobacteria-A, abundance expressed in number of nifH gene copies; Unicellular cyanobacteria-A, biological trait, ratio expressed in mass of carbon per amount of nifH gene copies; Unicellular cyanobacteria-B, abundance expressed in number of nifH gene copies; Unicellular cyanobacteria-B, biological trait, ratio expressed in mass of carbon per amount of nifH gene copies; Water sample; WS
    Type: Dataset
    Format: text/tab-separated-values, 2993 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-25
    Description: We present the Aquatic Symbiosis Genomics Project, a global collaboration to generate high quality genome sequences for a wide range of eukaryotes and their microbial symbionts. Launched under the Symbiosis in Aquatic Systems Initiative of the Gordon and Betty Moore Foundation, the ASG Project brings together researchers from across the globe who hope to use these reference genomes to augment and extend their analyses of the dynamics, mechanisms and environmental importance of symbiosis. Applying large-scale, high-throughput sequencing and assembly technologies, the ASG collaboration will assemble and annotate the genomes of 500 symbiotic organisms – both the “hosts” and the microbial symbionts with which they associate. These data will be released openly to benefit all who work on symbiosis, from conservation geneticists to those interested in the origin of the eukaryotic cell.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 62–77, doi:10.5670/oceanog.2012.04.
    Description: The Lau Integrated Study Site (ISS) has provided unique opportunities for study of ridge processes because of its back-arc setting in the southwestern Pacific. Its location allows study of a biogeographical province distinct from those of eastern Pacific and mid-Atlantic ridges, and crustal compositions along the ridge lie outside the range of mid-ocean ridge crustal compositions. The Lau ISS is located above a subduction zone, at an oblique angle. The underlying mantle receives water and other elements derived from the downgoing lithospheric slab, with an increase in slab influence from north to south. Water lowers the mantle melting temperature and leads to greater melt production where the water flux is greater, and to distinctive regional-scale gradients along the ridge. There are deeper faulted axial valleys with basaltic volcanism in the north and inflated axial highs with andesites in the south. Differences in igneous rock composition and release of magmatic volatiles affect compositions of vent fluids and deposits. Differences in vent fluid compositions and small-scale diffuse-flow regimes correlate with regional-scale patterns in microbial and megafaunal distributions. The interdisciplinary research effort at the Lau ISS has successfully identified linkages between subsurface processes and deep-sea biological communities, from mantle to microbe to megafauna.
    Description: Support was provided by National Science Foundation grants OCE-1038135 to MKT, OCE-0732369 and OCE-0240985 to CRF, OCE-0732369 and OCE-0838107 to PRG, OCE-0242618 to CHL, OCE-0242902 and OCE-0752256 to PJM, OCE-0728391 and OCE-0937404 to A-LR, and a GRFP to RB.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2018. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 31, no. 1, supplement (2018): 39-41.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Breusing, C., Mitchell, J., Delaney, J., Sylva, S. P., Seewald, J. S., Girguis, P. R., & Beinart, R. A. Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails. Isme Journal, (2020), doi:10.1038/s41396-020-0707-2.
    Description: Symbioses between invertebrate animals and chemosynthetic bacteria form the basis of hydrothermal vent ecosystems worldwide. In the Lau Basin, deep-sea vent snails of the genus Alviniconcha associate with either Gammaproteobacteria (A. kojimai, A. strummeri) or Campylobacteria (A. boucheti) that use sulfide and/or hydrogen as energy sources. While the A. boucheti host–symbiont combination (holobiont) dominates at vents with higher concentrations of sulfide and hydrogen, the A. kojimai and A. strummeri holobionts are more abundant at sites with lower concentrations of these reductants. We posit that adaptive differences in symbiont physiology and gene regulation might influence the observed niche partitioning between host taxa. To test this hypothesis, we used high-pressure respirometers to measure symbiont metabolic rates and examine changes in gene expression among holobionts exposed to in situ concentrations of hydrogen (H2: ~25 µM) or hydrogen sulfide (H2S: ~120 µM). The campylobacterial symbiont exhibited the lowest rate of H2S oxidation but the highest rate of H2 oxidation, with fewer transcriptional changes and less carbon fixation relative to the gammaproteobacterial symbionts under each experimental condition. These data reveal potential physiological adaptations among symbiont types, which may account for the observed net differences in metabolic activity and contribute to the observed niche segregation among holobionts.
    Description: We thank the Schmidt Ocean Institute, the crew of the R/V Falkor and the pilots of the ROV ROPOS for facilitating the sample collections and shipboard experiments, and the Broad Institute Microbial ‘Omics Core for preparing and sequencing the transcriptomic libraries. This material is based in part upon work supported by the National Science Foundation under Grant Numbers NSF OCE-1536653 (to PRG), OCE-1536331 (to RAB and JSS), OCE-1819530 and OCE-1736932 (to RAB).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 1074, doi:10.3389/fmicb.2016.01074.
    Description: Endosymbioses between animals and chemoautotrophic bacteria are ubiquitous at hydrothermal vents. These environments are distinguished by high physico-chemical variability, yet we know little about how these symbioses respond to environmental fluctuations. We therefore examined how the γ-proteobacterial symbionts of the vent snail Ifremeria nautilei respond to changes in sulfur geochemistry. Via shipboard high-pressure incubations, we subjected snails to 105 μM hydrogen sulfide (LS), 350 μM hydrogen sulfide (HS), 300 μM thiosulfate (TS) and seawater without any added inorganic electron donor (ND). While transcript levels of sulfur oxidation genes were largely consistent across treatments, HS and TS treatments stimulated genes for denitrification, nitrogen assimilation, and CO2 fixation, coincident with previously reported enhanced rates of inorganic carbon incorporation and sulfur oxidation in these treatments. Transcripts for genes mediating oxidative damage were enriched in the ND and LS treatments, potentially due to a reduction in O2 scavenging when electron donors were scarce. Oxidative TCA cycle gene transcripts were also more abundant in ND and LS treatments, suggesting that I. nautilei symbionts may be mixotrophic when inorganic electron donors are limiting. These data reveal the extent to which I. nautilei symbionts respond to changes in sulfur concentration and species, and, interpreted alongside coupled biochemical metabolic rates, identify gene targets whose expression patterns may be predictive of holobiont physiology in environmental samples.
    Description: This work was supported by National Science Foundation Grants OCE-0732369 (to PG), DGE-1144152 (to RB), and (1151698 to FS) and the Alfred P. Sloan Foundation (grant RC944 to FS).
    Keywords: Ifremeria nautilei ; Chemoautotroph ; Endosymbiont ; Methanotrophic bacteria ; Sulfur oxidizers ; Metatranscriptomics ; Deep sea vents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...